• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Community
    • Proof-automation
    • ACL2
    • Macro-libraries
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Math
      • 100-theorems
      • Arithmetic
      • Bit-vectors
        • Sparseint
          • Sparseint-impl
            • Sparseint$-binary-bitop-width
              • Sparseint$-plus-width
              • Sparseint$-binary-bitop-offset
              • Sparseint$-binary-bitop-int-width
              • Sparseint$-plus-int-width
              • Sum-with-cin
              • Sparseint$-plus-offset
              • Sparseint$-binary-bitop-int
              • Sparseint$-finalize-concat
              • Sparseint$-plus-int
              • Sparseint$-binary-bittest-width
              • Sparseint$-binary-bittest-int-width
              • Sparseint$-trailing-0-count-width
              • Sparseint$-height
              • Int-to-sparseint$-rec
              • Carry-out
              • Sparseint$-compare-width
              • Sparseint$-binary-bittest-offset
              • Sparseint$-equal-width
              • Sparseint$-binary-bittest-int
              • Sparseint$-compare-int-width
              • Sparseint$-bitcount-width
              • Sparseint$-unary-bittest-width
              • Sparseint$-rightshift-rec
              • Sparseint$-equal-int-width
              • Sparseint$-trailing-0-count-rec
              • Sparseint$-unary-bitop
              • Sparseint$-concatenate
              • Sparseint$-length-width-rec
              • Sparseint$-sign-ext
              • Sparseint$-binary-bitop
              • Binary-bitop
              • Sparseint$-compare-offset
              • Sparseint$-unary-bittest-offset
              • Sparseint$-equal-offset
              • Sparseint$-truncate
              • Sparseint$-mergeable-leaves-p
              • Carry-out-bit
              • Sparseint$-truncate-height
              • Sparseint$-compare-int
              • Sparseint$-binary-bittest
              • Sparseint$-equal-int
              • Sparseint$-rightshift
              • Sparseint$-leaves-mergeable-p
              • Sparseint$-plus
              • Unary-bitop
              • Sparseint$-bitcount-rec
              • Within-1
              • Sparseint$
              • Binary-bitop-cofactor2
              • Binary-bitop-cofactor1
              • Sparseint$-compare
              • Sparseint$-unary-bittest
              • Sparseint$-height-correct-exec
              • Sparseint$-equal
              • Sparseint$-bitnot
              • Sparseint$-unary-minus
              • Sparseint$-bit
              • Int-to-sparseint$
              • Binary-bittest
              • Sparseint$-length-rec
              • Sparseint$-val
              • Binary-bitop-swap
              • Compare
              • Sparseint$-real-height
              • Sparseint$-height-correctp
              • Sparseint$-length
            • Sparseint-p
            • Sparseint-binary-bittest
            • Sparseint-concatenate
            • Sparseint-binary-bitop
            • Sparseint-bitite
            • Sparseint-fix
            • Sparseint$-binary-minus
            • Sparseint-trailing-1-count-from
            • Sparseint-trailing-0-count-from
            • Sparseint-equal
            • Sparseint-test-bitorc2
            • Sparseint-test-bitorc1
            • Sparseint-test-bitnand
            • Sparseint-test-bitandc2
            • Sparseint-test-bitandc1
            • Sparseint-test-bitand
            • Sparseint-rightshift
            • Sparseint-bitcount-from
            • Sparseint-test-bitxor
            • Sparseint-test-bitor
            • Sparseint-test-bitnor
            • Sparseint-test-biteqv
            • Sparseint-compare
            • Sparseint-binary-minus
            • Sparseint-sign-ext
            • Sparseint-plus
            • Sparseint-bitandc2
            • Sparseint-bitandc1
            • Sparseint-bitand
            • Sparseint$-leaf-bitlimit
            • Sparseint-bitxor
            • Sparseint-bitorc2
            • Sparseint-bitorc1
            • Sparseint-bitor
            • Sparseint-bitnor
            • Sparseint-bitnand
            • Sparseint-biteqv
            • Sparseint-ash
            • Sparseint-<
            • Sparseint-bit
            • Sparseint-trailing-1-count
            • Sparseint-trailing-0-count
            • Sparseint-unary-minus
            • Sparseint-length
            • Sparseint-bitnot
            • Sparseint-bitcount
            • Int-to-sparseint
            • Sparseint-val
          • Bitops
          • Bv
          • Ihs
          • Rtl
        • Algebra
      • Testing-utilities
    • Sparseint-impl

    Sparseint$-binary-bitop-width

    Signature
    (sparseint$-binary-bitop-width 
         op width x x.height y-offset y y.height) 
     
      → 
    (mv binary-res height)
    Arguments
    op — Guard (integerp op).
    width — Guard (posp width).
    x — Guard (sparseint$-p x).
    x.height — Guard (natp x.height).
    y-offset — Guard (natp y-offset).
    y — Guard (sparseint$-p y).
    y.height — Guard (natp y.height).
    Returns
    binary-res — Type (sparseint$-p binary-res).
    height — Type (equal height (sparseint$-height binary-res)).

    Definitions and Theorems

    Function: sparseint$-binary-bitop-width

    (defun sparseint$-binary-bitop-width
           (op width x x.height y-offset y y.height)
     (declare (type (unsigned-byte 4) op))
     (declare (xargs :guard (and (integerp op)
                                 (posp width)
                                 (sparseint$-p x)
                                 (natp x.height)
                                 (natp y-offset)
                                 (sparseint$-p y)
                                 (natp y.height))))
     (declare
          (xargs :guard (and (sparseint$-height-correctp x)
                             (equal x.height (sparseint$-height x))
                             (sparseint$-height-correctp y)
                             (equal y.height (sparseint$-height y)))))
     (let ((__function__ 'sparseint$-binary-bitop-width))
      (declare (ignorable __function__))
      (b* ((x.height (mbe :logic (sparseint$-height x)
                          :exec x.height))
           (y.height (mbe :logic (sparseint$-height y)
                          :exec y.height))
           (width (lposfix width))
           (y-offset (lnfix y-offset)))
       (sparseint$-case
        x
        :leaf
        (sparseint$-case
          y
          :leaf
          (mv (sparseint$-leaf
                   (binary-bitop
                        op (bignum-logext width x.val)
                        (bignum-logext width (logtail y-offset y.val))))
              0)
          :concat (sparseint$-binary-bitop-int-width
                       (binary-bitop-swap op)
                       width y-offset
                       y y.height (bignum-logext width x.val)))
        :concat
        (sparseint$-case
             y :leaf
             (sparseint$-binary-bitop-int-width
                  op width 0 x x.height
                  (bignum-logext width (logtail y-offset y.val)))
             :concat
             (b* ((x.lsbs.height
                       (mbe :logic (sparseint$-height x.lsbs)
                            :exec (- x.height (if x.msbs-taller 2 1))))
                  ((when (<= width x.width))
                   (sparseint$-binary-bitop-width
                        op width x.lsbs
                        x.lsbs.height y-offset y y.height))
                  (y.msbs.height
                       (mbe :logic (sparseint$-height y.msbs)
                            :exec (- y.height (if y.lsbs-taller 2 1))))
                  ((when (<= y.width y-offset))
                   (sparseint$-binary-bitop-width
                        op width x x.height (- y-offset y.width)
                        y.msbs y.msbs.height))
                  (y-width1 (- y.width y-offset))
                  (y.lsbs.height
                       (mbe :logic (sparseint$-height y.lsbs)
                            :exec (- y.height (if y.msbs-taller 2 1))))
                  ((when (<= width y-width1))
                   (sparseint$-binary-bitop-width
                        op width x
                        x.height y-offset y.lsbs y.lsbs.height))
                  ((mv lsbs-and lsbs-and.height)
                   (sparseint$-binary-bitop-width
                        op x.width x.lsbs
                        x.lsbs.height y-offset y y.height))
                  (x.msbs.height
                       (mbe :logic (sparseint$-height x.msbs)
                            :exec (- x.height (if x.lsbs-taller 2 1))))
                  ((mv msbs-and msbs-and.height)
                   (sparseint$-binary-bitop-width
                        op (- width x.width)
                        x.msbs
                        x.msbs.height (+ x.width y-offset)
                        y y.height)))
               (sparseint$-concatenate-rebalance
                    x.width lsbs-and lsbs-and.height
                    msbs-and msbs-and.height)))))))

    Theorem: sparseint$-p-of-sparseint$-binary-bitop-width.binary-res

    (defthm sparseint$-p-of-sparseint$-binary-bitop-width.binary-res
      (b* (((mv ?binary-res ?height)
            (sparseint$-binary-bitop-width
                 op
                 width x x.height y-offset y y.height)))
        (sparseint$-p binary-res))
      :rule-classes :rewrite)

    Theorem: return-type-of-sparseint$-binary-bitop-width.height

    (defthm return-type-of-sparseint$-binary-bitop-width.height
      (b* (((mv ?binary-res ?height)
            (sparseint$-binary-bitop-width
                 op
                 width x x.height y-offset y y.height)))
        (equal height (sparseint$-height binary-res)))
      :rule-classes :rewrite)

    Theorem: sparseint$-height-correctp-of-sparseint$-binary-bitop-width

    (defthm sparseint$-height-correctp-of-sparseint$-binary-bitop-width
      (b* (((mv ?binary-res ?height)
            (sparseint$-binary-bitop-width
                 op
                 width x x.height y-offset y y.height)))
        (implies (and (sparseint$-height-correctp x)
                      (sparseint$-height-correctp y))
                 (sparseint$-height-correctp binary-res))))

    Theorem: sparseint$-val-of-sparseint$-binary-bitop-width

    (defthm sparseint$-val-of-sparseint$-binary-bitop-width
     (b* (((mv ?binary-res ?height)
           (sparseint$-binary-bitop-width
                op
                width x x.height y-offset y y.height)))
      (equal
        (sparseint$-val binary-res)
        (logext (pos-fix width)
                (binary-bitop op (sparseint$-val x)
                              (logtail y-offset (sparseint$-val y)))))))

    Theorem: sparseint$-binary-bitop-width-of-ifix-op

    (defthm sparseint$-binary-bitop-width-of-ifix-op
      (equal (sparseint$-binary-bitop-width
                  (ifix op)
                  width x x.height y-offset y y.height)
             (sparseint$-binary-bitop-width
                  op
                  width x x.height y-offset y y.height)))

    Theorem: sparseint$-binary-bitop-width-int-equiv-congruence-on-op

    (defthm sparseint$-binary-bitop-width-int-equiv-congruence-on-op
      (implies (int-equiv op op-equiv)
               (equal (sparseint$-binary-bitop-width
                           op width x x.height y-offset y y.height)
                      (sparseint$-binary-bitop-width
                           op-equiv
                           width x x.height y-offset y y.height)))
      :rule-classes :congruence)

    Theorem: sparseint$-binary-bitop-width-of-pos-fix-width

    (defthm sparseint$-binary-bitop-width-of-pos-fix-width
     (equal
          (sparseint$-binary-bitop-width op (pos-fix width)
                                         x x.height y-offset y y.height)
          (sparseint$-binary-bitop-width
               op
               width x x.height y-offset y y.height)))

    Theorem: sparseint$-binary-bitop-width-pos-equiv-congruence-on-width

    (defthm sparseint$-binary-bitop-width-pos-equiv-congruence-on-width
     (implies
      (pos-equiv width width-equiv)
      (equal
        (sparseint$-binary-bitop-width
             op width x x.height y-offset y y.height)
        (sparseint$-binary-bitop-width op width-equiv
                                       x x.height y-offset y y.height)))
     :rule-classes :congruence)

    Theorem: sparseint$-binary-bitop-width-of-sparseint$-fix-x

    (defthm sparseint$-binary-bitop-width-of-sparseint$-fix-x
     (equal (sparseint$-binary-bitop-width op width (sparseint$-fix x)
                                           x.height y-offset y y.height)
            (sparseint$-binary-bitop-width
                 op
                 width x x.height y-offset y y.height)))

    Theorem: sparseint$-binary-bitop-width-sparseint$-equiv-congruence-on-x

    (defthm
         sparseint$-binary-bitop-width-sparseint$-equiv-congruence-on-x
      (implies (sparseint$-equiv x x-equiv)
               (equal (sparseint$-binary-bitop-width
                           op width x x.height y-offset y y.height)
                      (sparseint$-binary-bitop-width
                           op width
                           x-equiv x.height y-offset y y.height)))
      :rule-classes :congruence)

    Theorem: sparseint$-binary-bitop-width-of-nfix-x.height

    (defthm sparseint$-binary-bitop-width-of-nfix-x.height
      (equal (sparseint$-binary-bitop-width op width x (nfix x.height)
                                            y-offset y y.height)
             (sparseint$-binary-bitop-width
                  op
                  width x x.height y-offset y y.height)))

    Theorem: sparseint$-binary-bitop-width-nat-equiv-congruence-on-x.height

    (defthm
         sparseint$-binary-bitop-width-nat-equiv-congruence-on-x.height
      (implies (nat-equiv x.height x.height-equiv)
               (equal (sparseint$-binary-bitop-width
                           op width x x.height y-offset y y.height)
                      (sparseint$-binary-bitop-width
                           op width
                           x x.height-equiv y-offset y y.height)))
      :rule-classes :congruence)

    Theorem: sparseint$-binary-bitop-width-of-nfix-y-offset

    (defthm sparseint$-binary-bitop-width-of-nfix-y-offset
     (equal
      (sparseint$-binary-bitop-width op width x x.height (nfix y-offset)
                                     y y.height)
      (sparseint$-binary-bitop-width
           op
           width x x.height y-offset y y.height)))

    Theorem: sparseint$-binary-bitop-width-nat-equiv-congruence-on-y-offset

    (defthm
         sparseint$-binary-bitop-width-nat-equiv-congruence-on-y-offset
      (implies (nat-equiv y-offset y-offset-equiv)
               (equal (sparseint$-binary-bitop-width
                           op width x x.height y-offset y y.height)
                      (sparseint$-binary-bitop-width
                           op width
                           x x.height y-offset-equiv y y.height)))
      :rule-classes :congruence)

    Theorem: sparseint$-binary-bitop-width-of-sparseint$-fix-y

    (defthm sparseint$-binary-bitop-width-of-sparseint$-fix-y
      (equal (sparseint$-binary-bitop-width
                  op width
                  x x.height y-offset (sparseint$-fix y)
                  y.height)
             (sparseint$-binary-bitop-width
                  op
                  width x x.height y-offset y y.height)))

    Theorem: sparseint$-binary-bitop-width-sparseint$-equiv-congruence-on-y

    (defthm
         sparseint$-binary-bitop-width-sparseint$-equiv-congruence-on-y
      (implies (sparseint$-equiv y y-equiv)
               (equal (sparseint$-binary-bitop-width
                           op width x x.height y-offset y y.height)
                      (sparseint$-binary-bitop-width
                           op width
                           x x.height y-offset y-equiv y.height)))
      :rule-classes :congruence)

    Theorem: sparseint$-binary-bitop-width-of-nfix-y.height

    (defthm sparseint$-binary-bitop-width-of-nfix-y.height
      (equal (sparseint$-binary-bitop-width
                  op width
                  x x.height y-offset y (nfix y.height))
             (sparseint$-binary-bitop-width
                  op
                  width x x.height y-offset y y.height)))

    Theorem: sparseint$-binary-bitop-width-nat-equiv-congruence-on-y.height

    (defthm
         sparseint$-binary-bitop-width-nat-equiv-congruence-on-y.height
      (implies (nat-equiv y.height y.height-equiv)
               (equal (sparseint$-binary-bitop-width
                           op width x x.height y-offset y y.height)
                      (sparseint$-binary-bitop-width
                           op width
                           x x.height y-offset y y.height-equiv)))
      :rule-classes :congruence)