• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Community
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Math
      • 100-theorems
      • Arithmetic
      • Bit-vectors
        • Sparseint
          • Sparseint-impl
            • Sparseint$-binary-bitop-width
            • Sparseint$-plus-width
            • Sparseint$-binary-bitop-offset
            • Sparseint$-binary-bitop-int-width
            • Sparseint$-plus-int-width
            • Sum-with-cin
            • Sparseint$-plus-offset
              • Sparseint$-binary-bitop-int
              • Sparseint$-finalize-concat
              • Sparseint$-plus-int
              • Sparseint$-binary-bittest-width
              • Sparseint$-binary-bittest-int-width
              • Sparseint$-trailing-0-count-width
              • Sparseint$-height
              • Int-to-sparseint$-rec
              • Carry-out
              • Sparseint$-compare-width
              • Sparseint$-binary-bittest-offset
              • Sparseint$-equal-width
              • Sparseint$-binary-bittest-int
              • Sparseint$-compare-int-width
              • Sparseint$-bitcount-width
              • Sparseint$-unary-bittest-width
              • Sparseint$-rightshift-rec
              • Sparseint$-equal-int-width
              • Sparseint$-trailing-0-count-rec
              • Sparseint$-unary-bitop
              • Sparseint$-concatenate
              • Sparseint$-length-width-rec
              • Sparseint$-sign-ext
              • Sparseint$-binary-bitop
              • Binary-bitop
              • Sparseint$-compare-offset
              • Sparseint$-unary-bittest-offset
              • Sparseint$-equal-offset
              • Sparseint$-truncate
              • Sparseint$-mergeable-leaves-p
              • Carry-out-bit
              • Sparseint$-truncate-height
              • Sparseint$-compare-int
              • Sparseint$-binary-bittest
              • Sparseint$-equal-int
              • Sparseint$-rightshift
              • Sparseint$-leaves-mergeable-p
              • Sparseint$-plus
              • Unary-bitop
              • Sparseint$-bitcount-rec
              • Within-1
              • Sparseint$
              • Binary-bitop-cofactor2
              • Binary-bitop-cofactor1
              • Sparseint$-compare
              • Sparseint$-unary-bittest
              • Sparseint$-height-correct-exec
              • Sparseint$-equal
              • Sparseint$-bitnot
              • Sparseint$-unary-minus
              • Sparseint$-bit
              • Int-to-sparseint$
              • Binary-bittest
              • Sparseint$-length-rec
              • Sparseint$-val
              • Binary-bitop-swap
              • Compare
              • Sparseint$-real-height
              • Sparseint$-height-correctp
              • Sparseint$-length
            • Sparseint-p
            • Sparseint-binary-bittest
            • Sparseint-concatenate
            • Sparseint-binary-bitop
            • Sparseint-bitite
            • Sparseint-fix
            • Sparseint$-binary-minus
            • Sparseint-trailing-1-count-from
            • Sparseint-trailing-0-count-from
            • Sparseint-equal
            • Sparseint-test-bitorc2
            • Sparseint-test-bitorc1
            • Sparseint-test-bitnand
            • Sparseint-test-bitandc2
            • Sparseint-test-bitandc1
            • Sparseint-test-bitand
            • Sparseint-rightshift
            • Sparseint-bitcount-from
            • Sparseint-test-bitxor
            • Sparseint-test-bitor
            • Sparseint-test-bitnor
            • Sparseint-test-biteqv
            • Sparseint-compare
            • Sparseint-binary-minus
            • Sparseint-sign-ext
            • Sparseint-plus
            • Sparseint-bitandc2
            • Sparseint-bitandc1
            • Sparseint-bitand
            • Sparseint$-leaf-bitlimit
            • Sparseint-bitxor
            • Sparseint-bitorc2
            • Sparseint-bitorc1
            • Sparseint-bitor
            • Sparseint-bitnor
            • Sparseint-bitnand
            • Sparseint-biteqv
            • Sparseint-ash
            • Sparseint-<
            • Sparseint-bit
            • Sparseint-trailing-1-count
            • Sparseint-trailing-0-count
            • Sparseint-unary-minus
            • Sparseint-length
            • Sparseint-bitnot
            • Sparseint-bitcount
            • Int-to-sparseint
            • Sparseint-val
          • Bitops
          • Bv
          • Ihs
          • Rtl
        • Algebra
      • Testing-utilities
    • Sparseint-impl

    Sparseint$-plus-offset

    Signature
    (sparseint$-plus-offset x x.height y-offset y y.height cin) 
      → 
    (mv sum height)
    Arguments
    x — Guard (sparseint$-p x).
    x.height — Guard (natp x.height).
    y-offset — Guard (natp y-offset).
    y — Guard (sparseint$-p y).
    y.height — Guard (natp y.height).
    cin — Guard (bitp cin).
    Returns
    sum — Type (sparseint$-p sum).
    height — Type (equal height (sparseint$-height sum)).

    Definitions and Theorems

    Function: sparseint$-plus-offset

    (defun sparseint$-plus-offset (x x.height y-offset y y.height cin)
     (declare (xargs :guard (and (sparseint$-p x)
                                 (natp x.height)
                                 (natp y-offset)
                                 (sparseint$-p y)
                                 (natp y.height)
                                 (bitp cin))))
     (declare
          (xargs :guard (and (sparseint$-height-correctp x)
                             (equal x.height (sparseint$-height x))
                             (sparseint$-height-correctp y)
                             (equal y.height (sparseint$-height y)))))
     (let ((__function__ 'sparseint$-plus-offset))
      (declare (ignorable __function__))
      (b* ((x.height (mbe :logic (sparseint$-height x)
                          :exec x.height))
           (y.height (mbe :logic (sparseint$-height y)
                          :exec y.height))
           (y-offset (lnfix y-offset)))
       (sparseint$-case
        x
        :leaf
        (sparseint$-case
            y
            :leaf
            (mv (sparseint$-leaf
                     (sum-with-cin cin x.val (logtail y-offset y.val)))
                0)
            :concat (sparseint$-plus-int y-offset y y.height x.val cin))
        :concat
        (sparseint$-case
          y :leaf
          (sparseint$-plus-int 0 x x.height (logtail y-offset y.val)
                               cin)
          :concat
          (b*
            ((y.msbs.height
                  (mbe :logic (sparseint$-height y.msbs)
                       :exec (- y.height (if y.lsbs-taller 2 1))))
             ((when (<= y.width y-offset))
              (sparseint$-plus-offset x x.height (- y-offset y.width)
                                      y.msbs y.msbs.height cin))
             (x.lsbs.height
                  (mbe :logic (sparseint$-height x.lsbs)
                       :exec (- x.height (if x.msbs-taller 2 1))))
             ((mv lsbs-sum lsbs-sum.height lsbs-cout)
              (sparseint$-plus-width
                   x.width x.lsbs
                   x.lsbs.height y-offset y y.height cin))
             (x.msbs.height
                  (mbe :logic (sparseint$-height x.msbs)
                       :exec (- x.height (if x.lsbs-taller 2 1))))
             ((mv msbs-sum msbs-sum.height)
              (sparseint$-plus-offset x.msbs
                                      x.msbs.height (+ x.width y-offset)
                                      y y.height lsbs-cout)))
            (sparseint$-concatenate-rebalance
                 x.width lsbs-sum lsbs-sum.height
                 msbs-sum msbs-sum.height)))))))

    Theorem: sparseint$-p-of-sparseint$-plus-offset.sum

    (defthm sparseint$-p-of-sparseint$-plus-offset.sum
     (b* (((mv ?sum ?height)
           (sparseint$-plus-offset x x.height y-offset y y.height cin)))
       (sparseint$-p sum))
     :rule-classes :rewrite)

    Theorem: return-type-of-sparseint$-plus-offset.height

    (defthm return-type-of-sparseint$-plus-offset.height
     (b* (((mv ?sum ?height)
           (sparseint$-plus-offset x x.height y-offset y y.height cin)))
       (equal height (sparseint$-height sum)))
     :rule-classes :rewrite)

    Theorem: sparseint$-height-correctp-of-sparseint$-plus-offset

    (defthm sparseint$-height-correctp-of-sparseint$-plus-offset
     (b* (((mv ?sum ?height)
           (sparseint$-plus-offset x x.height y-offset y y.height cin)))
       (implies (and (sparseint$-height-correctp x)
                     (sparseint$-height-correctp y))
                (sparseint$-height-correctp sum))))

    Theorem: sparseint$-val-of-sparseint$-plus-offset

    (defthm sparseint$-val-of-sparseint$-plus-offset
     (b* (((mv ?sum ?height)
           (sparseint$-plus-offset x x.height y-offset y y.height cin)))
       (equal (sparseint$-val sum)
              (sum-with-cin cin (sparseint$-val x)
                            (logtail y-offset (sparseint$-val y))))))

    Theorem: sparseint$-plus-offset-of-sparseint$-fix-x

    (defthm sparseint$-plus-offset-of-sparseint$-fix-x
      (equal
           (sparseint$-plus-offset (sparseint$-fix x)
                                   x.height y-offset y y.height cin)
           (sparseint$-plus-offset x x.height y-offset y y.height cin)))

    Theorem: sparseint$-plus-offset-sparseint$-equiv-congruence-on-x

    (defthm sparseint$-plus-offset-sparseint$-equiv-congruence-on-x
     (implies
      (sparseint$-equiv x x-equiv)
      (equal (sparseint$-plus-offset x x.height y-offset y y.height cin)
             (sparseint$-plus-offset x-equiv
                                     x.height y-offset y y.height cin)))
     :rule-classes :congruence)

    Theorem: sparseint$-plus-offset-of-nfix-x.height

    (defthm sparseint$-plus-offset-of-nfix-x.height
      (equal
           (sparseint$-plus-offset x (nfix x.height)
                                   y-offset y y.height cin)
           (sparseint$-plus-offset x x.height y-offset y y.height cin)))

    Theorem: sparseint$-plus-offset-nat-equiv-congruence-on-x.height

    (defthm sparseint$-plus-offset-nat-equiv-congruence-on-x.height
     (implies
      (nat-equiv x.height x.height-equiv)
      (equal (sparseint$-plus-offset x x.height y-offset y y.height cin)
             (sparseint$-plus-offset x x.height-equiv
                                     y-offset y y.height cin)))
     :rule-classes :congruence)

    Theorem: sparseint$-plus-offset-of-nfix-y-offset

    (defthm sparseint$-plus-offset-of-nfix-y-offset
      (equal
           (sparseint$-plus-offset x x.height (nfix y-offset)
                                   y y.height cin)
           (sparseint$-plus-offset x x.height y-offset y y.height cin)))

    Theorem: sparseint$-plus-offset-nat-equiv-congruence-on-y-offset

    (defthm sparseint$-plus-offset-nat-equiv-congruence-on-y-offset
     (implies
      (nat-equiv y-offset y-offset-equiv)
      (equal (sparseint$-plus-offset x x.height y-offset y y.height cin)
             (sparseint$-plus-offset x x.height
                                     y-offset-equiv y y.height cin)))
     :rule-classes :congruence)

    Theorem: sparseint$-plus-offset-of-sparseint$-fix-y

    (defthm sparseint$-plus-offset-of-sparseint$-fix-y
     (equal
          (sparseint$-plus-offset x x.height y-offset (sparseint$-fix y)
                                  y.height cin)
          (sparseint$-plus-offset x x.height y-offset y y.height cin)))

    Theorem: sparseint$-plus-offset-sparseint$-equiv-congruence-on-y

    (defthm sparseint$-plus-offset-sparseint$-equiv-congruence-on-y
     (implies
      (sparseint$-equiv y y-equiv)
      (equal (sparseint$-plus-offset x x.height y-offset y y.height cin)
             (sparseint$-plus-offset x x.height
                                     y-offset y-equiv y.height cin)))
     :rule-classes :congruence)

    Theorem: sparseint$-plus-offset-of-nfix-y.height

    (defthm sparseint$-plus-offset-of-nfix-y.height
      (equal
           (sparseint$-plus-offset x x.height y-offset y (nfix y.height)
                                   cin)
           (sparseint$-plus-offset x x.height y-offset y y.height cin)))

    Theorem: sparseint$-plus-offset-nat-equiv-congruence-on-y.height

    (defthm sparseint$-plus-offset-nat-equiv-congruence-on-y.height
     (implies
      (nat-equiv y.height y.height-equiv)
      (equal (sparseint$-plus-offset x x.height y-offset y y.height cin)
             (sparseint$-plus-offset x x.height
                                     y-offset y y.height-equiv cin)))
     :rule-classes :congruence)

    Theorem: sparseint$-plus-offset-of-bfix-cin

    (defthm sparseint$-plus-offset-of-bfix-cin
     (equal
        (sparseint$-plus-offset x
                                x.height y-offset y y.height (bfix cin))
        (sparseint$-plus-offset x x.height y-offset y y.height cin)))

    Theorem: sparseint$-plus-offset-bit-equiv-congruence-on-cin

    (defthm sparseint$-plus-offset-bit-equiv-congruence-on-cin
     (implies
      (bit-equiv cin cin-equiv)
      (equal (sparseint$-plus-offset x x.height y-offset y y.height cin)
             (sparseint$-plus-offset x x.height
                                     y-offset y y.height cin-equiv)))
     :rule-classes :congruence)