Fixing function for binary-info structures.
(binary-info-fix x) → new-x
Function:
(defun binary-info-fix$inline (x) (declare (xargs :guard (binary-infop x))) (let ((__function__ 'binary-info-fix)) (declare (ignorable __function__)) (mbe :logic (b* ((type (type-fix (cdr (std::da-nth 0 x)))) (table (valid-table-fix (cdr (std::da-nth 1 x))) )) (list (cons 'type type) (cons 'table table))) :exec x)))
Theorem:
(defthm binary-infop-of-binary-info-fix (b* ((new-x (binary-info-fix$inline x))) (binary-infop new-x)) :rule-classes :rewrite)
Theorem:
(defthm binary-info-fix-when-binary-infop (implies (binary-infop x) (equal (binary-info-fix x) x)))
Function:
(defun binary-info-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (binary-infop acl2::x) (binary-infop acl2::y)))) (equal (binary-info-fix acl2::x) (binary-info-fix acl2::y)))
Theorem:
(defthm binary-info-equiv-is-an-equivalence (and (booleanp (binary-info-equiv x y)) (binary-info-equiv x x) (implies (binary-info-equiv x y) (binary-info-equiv y x)) (implies (and (binary-info-equiv x y) (binary-info-equiv y z)) (binary-info-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm binary-info-equiv-implies-equal-binary-info-fix-1 (implies (binary-info-equiv acl2::x x-equiv) (equal (binary-info-fix acl2::x) (binary-info-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm binary-info-fix-under-binary-info-equiv (binary-info-equiv (binary-info-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-binary-info-fix-1-forward-to-binary-info-equiv (implies (equal (binary-info-fix acl2::x) acl2::y) (binary-info-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-binary-info-fix-2-forward-to-binary-info-equiv (implies (equal acl2::x (binary-info-fix acl2::y)) (binary-info-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm binary-info-equiv-of-binary-info-fix-1-forward (implies (binary-info-equiv (binary-info-fix acl2::x) acl2::y) (binary-info-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm binary-info-equiv-of-binary-info-fix-2-forward (implies (binary-info-equiv acl2::x (binary-info-fix acl2::y)) (binary-info-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)