Fixing function for valid-defstatus structures.
(valid-defstatus-fix x) → new-x
Function:
(defun valid-defstatus-fix$inline (x) (declare (xargs :guard (valid-defstatusp x))) (let ((__function__ 'valid-defstatus-fix)) (declare (ignorable __function__)) (mbe :logic (case (valid-defstatus-kind x) (:undefined (cons :undefined (list))) (:tentative (cons :tentative (list))) (:defined (cons :defined (list)))) :exec x)))
Theorem:
(defthm valid-defstatusp-of-valid-defstatus-fix (b* ((new-x (valid-defstatus-fix$inline x))) (valid-defstatusp new-x)) :rule-classes :rewrite)
Theorem:
(defthm valid-defstatus-fix-when-valid-defstatusp (implies (valid-defstatusp x) (equal (valid-defstatus-fix x) x)))
Function:
(defun valid-defstatus-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (valid-defstatusp acl2::x) (valid-defstatusp acl2::y)))) (equal (valid-defstatus-fix acl2::x) (valid-defstatus-fix acl2::y)))
Theorem:
(defthm valid-defstatus-equiv-is-an-equivalence (and (booleanp (valid-defstatus-equiv x y)) (valid-defstatus-equiv x x) (implies (valid-defstatus-equiv x y) (valid-defstatus-equiv y x)) (implies (and (valid-defstatus-equiv x y) (valid-defstatus-equiv y z)) (valid-defstatus-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm valid-defstatus-equiv-implies-equal-valid-defstatus-fix-1 (implies (valid-defstatus-equiv acl2::x x-equiv) (equal (valid-defstatus-fix acl2::x) (valid-defstatus-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm valid-defstatus-fix-under-valid-defstatus-equiv (valid-defstatus-equiv (valid-defstatus-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-valid-defstatus-fix-1-forward-to-valid-defstatus-equiv (implies (equal (valid-defstatus-fix acl2::x) acl2::y) (valid-defstatus-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-valid-defstatus-fix-2-forward-to-valid-defstatus-equiv (implies (equal acl2::x (valid-defstatus-fix acl2::y)) (valid-defstatus-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm valid-defstatus-equiv-of-valid-defstatus-fix-1-forward (implies (valid-defstatus-equiv (valid-defstatus-fix acl2::x) acl2::y) (valid-defstatus-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm valid-defstatus-equiv-of-valid-defstatus-fix-2-forward (implies (valid-defstatus-equiv acl2::x (valid-defstatus-fix acl2::y)) (valid-defstatus-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm valid-defstatus-kind$inline-of-valid-defstatus-fix-x (equal (valid-defstatus-kind$inline (valid-defstatus-fix x)) (valid-defstatus-kind$inline x)))
Theorem:
(defthm valid-defstatus-kind$inline-valid-defstatus-equiv-congruence-on-x (implies (valid-defstatus-equiv x x-equiv) (equal (valid-defstatus-kind$inline x) (valid-defstatus-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-valid-defstatus-fix (consp (valid-defstatus-fix x)) :rule-classes :type-prescription)