Basic equivalence relation for backtrace structures.
Function:
(defun backtrace-equiv$inline (x y) (declare (xargs :guard (and (backtrace-p x) (backtrace-p y)))) (equal (backtrace-fix x) (backtrace-fix y)))
Theorem:
(defthm backtrace-equiv-is-an-equivalence (and (booleanp (backtrace-equiv x y)) (backtrace-equiv x x) (implies (backtrace-equiv x y) (backtrace-equiv y x)) (implies (and (backtrace-equiv x y) (backtrace-equiv y z)) (backtrace-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm backtrace-equiv-implies-equal-backtrace-fix-1 (implies (backtrace-equiv x x-equiv) (equal (backtrace-fix x) (backtrace-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm backtrace-fix-under-backtrace-equiv (backtrace-equiv (backtrace-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-backtrace-fix-1-forward-to-backtrace-equiv (implies (equal (backtrace-fix x) y) (backtrace-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-backtrace-fix-2-forward-to-backtrace-equiv (implies (equal x (backtrace-fix y)) (backtrace-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm backtrace-equiv-of-backtrace-fix-1-forward (implies (backtrace-equiv (backtrace-fix x) y) (backtrace-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm backtrace-equiv-of-backtrace-fix-2-forward (implies (backtrace-equiv x (backtrace-fix y)) (backtrace-equiv x y)) :rule-classes :forward-chaining)