Basic equivalence relation for backtrace-spec structures.
Function:
(defun backtrace-spec-equiv$inline (x y) (declare (xargs :guard (and (backtrace-spec-p x) (backtrace-spec-p y)))) (equal (backtrace-spec-fix x) (backtrace-spec-fix y)))
Theorem:
(defthm backtrace-spec-equiv-is-an-equivalence (and (booleanp (backtrace-spec-equiv x y)) (backtrace-spec-equiv x x) (implies (backtrace-spec-equiv x y) (backtrace-spec-equiv y x)) (implies (and (backtrace-spec-equiv x y) (backtrace-spec-equiv y z)) (backtrace-spec-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm backtrace-spec-equiv-implies-equal-backtrace-spec-fix-1 (implies (backtrace-spec-equiv x x-equiv) (equal (backtrace-spec-fix x) (backtrace-spec-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm backtrace-spec-fix-under-backtrace-spec-equiv (backtrace-spec-equiv (backtrace-spec-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-backtrace-spec-fix-1-forward-to-backtrace-spec-equiv (implies (equal (backtrace-spec-fix x) y) (backtrace-spec-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-backtrace-spec-fix-2-forward-to-backtrace-spec-equiv (implies (equal x (backtrace-spec-fix y)) (backtrace-spec-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm backtrace-spec-equiv-of-backtrace-spec-fix-1-forward (implies (backtrace-spec-equiv (backtrace-spec-fix x) y) (backtrace-spec-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm backtrace-spec-equiv-of-backtrace-spec-fix-2-forward (implies (backtrace-spec-equiv x (backtrace-spec-fix y)) (backtrace-spec-equiv x y)) :rule-classes :forward-chaining)