Basic equivalence relation for cgraph-equivlist structures.
Function:
(defun cgraph-equivlist-equiv$inline (x y) (declare (xargs :guard (and (cgraph-equivlist-p x) (cgraph-equivlist-p y)))) (equal (cgraph-equivlist-fix x) (cgraph-equivlist-fix y)))
Theorem:
(defthm cgraph-equivlist-equiv-is-an-equivalence (and (booleanp (cgraph-equivlist-equiv x y)) (cgraph-equivlist-equiv x x) (implies (cgraph-equivlist-equiv x y) (cgraph-equivlist-equiv y x)) (implies (and (cgraph-equivlist-equiv x y) (cgraph-equivlist-equiv y z)) (cgraph-equivlist-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm cgraph-equivlist-equiv-implies-equal-cgraph-equivlist-fix-1 (implies (cgraph-equivlist-equiv x x-equiv) (equal (cgraph-equivlist-fix x) (cgraph-equivlist-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm cgraph-equivlist-fix-under-cgraph-equivlist-equiv (cgraph-equivlist-equiv (cgraph-equivlist-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-cgraph-equivlist-fix-1-forward-to-cgraph-equivlist-equiv (implies (equal (cgraph-equivlist-fix x) y) (cgraph-equivlist-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-cgraph-equivlist-fix-2-forward-to-cgraph-equivlist-equiv (implies (equal x (cgraph-equivlist-fix y)) (cgraph-equivlist-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm cgraph-equivlist-equiv-of-cgraph-equivlist-fix-1-forward (implies (cgraph-equivlist-equiv (cgraph-equivlist-fix x) y) (cgraph-equivlist-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm cgraph-equivlist-equiv-of-cgraph-equivlist-fix-2-forward (implies (cgraph-equivlist-equiv x (cgraph-equivlist-fix y)) (cgraph-equivlist-equiv x y)) :rule-classes :forward-chaining)