Fixing function for cgraph-equivnode structures.
(cgraph-equivnode-fix x) → new-x
Function:
(defun cgraph-equivnode-fix$inline (x) (declare (xargs :guard (cgraph-equivnode-p x))) (let ((__function__ 'cgraph-equivnode-fix)) (declare (ignorable __function__)) (mbe :logic (b* ((equivalence (fgl-object-fix (cdr (std::da-nth 0 x)))) (other (fgl-object-fix (cdr (std::da-nth 1 x))))) (list (cons 'equivalence equivalence) (cons 'other other))) :exec x)))
Theorem:
(defthm cgraph-equivnode-p-of-cgraph-equivnode-fix (b* ((new-x (cgraph-equivnode-fix$inline x))) (cgraph-equivnode-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm cgraph-equivnode-fix-when-cgraph-equivnode-p (implies (cgraph-equivnode-p x) (equal (cgraph-equivnode-fix x) x)))
Function:
(defun cgraph-equivnode-equiv$inline (x y) (declare (xargs :guard (and (cgraph-equivnode-p x) (cgraph-equivnode-p y)))) (equal (cgraph-equivnode-fix x) (cgraph-equivnode-fix y)))
Theorem:
(defthm cgraph-equivnode-equiv-is-an-equivalence (and (booleanp (cgraph-equivnode-equiv x y)) (cgraph-equivnode-equiv x x) (implies (cgraph-equivnode-equiv x y) (cgraph-equivnode-equiv y x)) (implies (and (cgraph-equivnode-equiv x y) (cgraph-equivnode-equiv y z)) (cgraph-equivnode-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm cgraph-equivnode-equiv-implies-equal-cgraph-equivnode-fix-1 (implies (cgraph-equivnode-equiv x x-equiv) (equal (cgraph-equivnode-fix x) (cgraph-equivnode-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm cgraph-equivnode-fix-under-cgraph-equivnode-equiv (cgraph-equivnode-equiv (cgraph-equivnode-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-cgraph-equivnode-fix-1-forward-to-cgraph-equivnode-equiv (implies (equal (cgraph-equivnode-fix x) y) (cgraph-equivnode-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-cgraph-equivnode-fix-2-forward-to-cgraph-equivnode-equiv (implies (equal x (cgraph-equivnode-fix y)) (cgraph-equivnode-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm cgraph-equivnode-equiv-of-cgraph-equivnode-fix-1-forward (implies (cgraph-equivnode-equiv (cgraph-equivnode-fix x) y) (cgraph-equivnode-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm cgraph-equivnode-equiv-of-cgraph-equivnode-fix-2-forward (implies (cgraph-equivnode-equiv x (cgraph-equivnode-fix y)) (cgraph-equivnode-equiv x y)) :rule-classes :forward-chaining)