• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Community
    • Proof-automation
      • Gl
      • Witness-cp
      • Ccg
      • Install-not-normalized
      • Rewrite$
      • Fgl
        • Fgl-rewrite-rules
        • Fgl-function-mode
        • Fgl-object
        • Fgl-solving
        • Fgl-handling-if-then-elses
        • Fgl-getting-bits-from-objects
        • Fgl-primitive-and-meta-rules
        • Fgl-counterexamples
        • Fgl-interpreter-overview
        • Fgl-correctness-of-binding-free-variables
        • Fgl-debugging
        • Fgl-testbenches
        • Def-fgl-boolean-constraint
        • Fgl-stack
          • Scratchobj
          • Minor-frame
          • Major-frame
          • Major-stack
          • Scratchlist
            • Scratchlist-fix
              • Scratchlist-equiv
              • Scratchlist-p
            • Minor-stack
          • Fgl-rewrite-tracing
          • Def-fgl-param-thm
          • Def-fgl-thm
          • Fgl-fast-alist-support
          • Fgl-array-support
          • Advanced-equivalence-checking-with-fgl
          • Fgl-fty-support
          • Fgl-internals
        • Removable-runes
        • Efficiency
        • Rewrite-bounds
        • Bash
        • Def-dag-measure
        • Bdd
        • Remove-hyps
        • Contextual-rewriting
        • Simp
        • Rewrite$-hyps
        • Bash-term-to-dnf
        • Use-trivial-ancestors-check
        • Minimal-runes
        • Clause-processor-tools
        • Fn-is-body
        • Without-subsumption
        • Rewrite-equiv-hint
        • Def-bounds
        • Rewrite$-context
        • Try-gl-concls
        • Hint-utils
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Scratchlist

    Scratchlist-fix

    (scratchlist-fix x) is a usual ACL2::fty list fixing function.

    Signature
    (scratchlist-fix x) → fty::newx
    Arguments
    x — Guard (scratchlist-p x).
    Returns
    fty::newx — Type (scratchlist-p fty::newx).

    In the logic, we apply scratchobj-fix to each member of the x. In the execution, none of that is actually necessary and this is just an inlined identity function.

    Definitions and Theorems

    Function: scratchlist-fix$inline

    (defun scratchlist-fix$inline (x)
      (declare (xargs :guard (scratchlist-p x)))
      (let ((__function__ 'scratchlist-fix))
        (declare (ignorable __function__))
        (mbe :logic
             (if (atom x)
                 nil
               (cons (scratchobj-fix (car x))
                     (scratchlist-fix (cdr x))))
             :exec x)))

    Theorem: scratchlist-p-of-scratchlist-fix

    (defthm scratchlist-p-of-scratchlist-fix
      (b* ((fty::newx (scratchlist-fix$inline x)))
        (scratchlist-p fty::newx))
      :rule-classes :rewrite)

    Theorem: scratchlist-fix-when-scratchlist-p

    (defthm scratchlist-fix-when-scratchlist-p
      (implies (scratchlist-p x)
               (equal (scratchlist-fix x) x)))

    Function: scratchlist-equiv$inline

    (defun scratchlist-equiv$inline (x y)
      (declare (xargs :guard (and (scratchlist-p x)
                                  (scratchlist-p y))))
      (equal (scratchlist-fix x)
             (scratchlist-fix y)))

    Theorem: scratchlist-equiv-is-an-equivalence

    (defthm scratchlist-equiv-is-an-equivalence
      (and (booleanp (scratchlist-equiv x y))
           (scratchlist-equiv x x)
           (implies (scratchlist-equiv x y)
                    (scratchlist-equiv y x))
           (implies (and (scratchlist-equiv x y)
                         (scratchlist-equiv y z))
                    (scratchlist-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: scratchlist-equiv-implies-equal-scratchlist-fix-1

    (defthm scratchlist-equiv-implies-equal-scratchlist-fix-1
      (implies (scratchlist-equiv x x-equiv)
               (equal (scratchlist-fix x)
                      (scratchlist-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: scratchlist-fix-under-scratchlist-equiv

    (defthm scratchlist-fix-under-scratchlist-equiv
      (scratchlist-equiv (scratchlist-fix x)
                         x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-scratchlist-fix-1-forward-to-scratchlist-equiv

    (defthm equal-of-scratchlist-fix-1-forward-to-scratchlist-equiv
      (implies (equal (scratchlist-fix x) y)
               (scratchlist-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-scratchlist-fix-2-forward-to-scratchlist-equiv

    (defthm equal-of-scratchlist-fix-2-forward-to-scratchlist-equiv
      (implies (equal x (scratchlist-fix y))
               (scratchlist-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: scratchlist-equiv-of-scratchlist-fix-1-forward

    (defthm scratchlist-equiv-of-scratchlist-fix-1-forward
      (implies (scratchlist-equiv (scratchlist-fix x)
                                  y)
               (scratchlist-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: scratchlist-equiv-of-scratchlist-fix-2-forward

    (defthm scratchlist-equiv-of-scratchlist-fix-2-forward
      (implies (scratchlist-equiv x (scratchlist-fix y))
               (scratchlist-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: car-of-scratchlist-fix-x-under-scratchobj-equiv

    (defthm car-of-scratchlist-fix-x-under-scratchobj-equiv
      (scratchobj-equiv (car (scratchlist-fix x))
                        (car x)))

    Theorem: car-scratchlist-equiv-congruence-on-x-under-scratchobj-equiv

    (defthm car-scratchlist-equiv-congruence-on-x-under-scratchobj-equiv
      (implies (scratchlist-equiv x x-equiv)
               (scratchobj-equiv (car x)
                                 (car x-equiv)))
      :rule-classes :congruence)

    Theorem: cdr-of-scratchlist-fix-x-under-scratchlist-equiv

    (defthm cdr-of-scratchlist-fix-x-under-scratchlist-equiv
      (scratchlist-equiv (cdr (scratchlist-fix x))
                         (cdr x)))

    Theorem: cdr-scratchlist-equiv-congruence-on-x-under-scratchlist-equiv

    (defthm
          cdr-scratchlist-equiv-congruence-on-x-under-scratchlist-equiv
      (implies (scratchlist-equiv x x-equiv)
               (scratchlist-equiv (cdr x)
                                  (cdr x-equiv)))
      :rule-classes :congruence)

    Theorem: cons-of-scratchobj-fix-x-under-scratchlist-equiv

    (defthm cons-of-scratchobj-fix-x-under-scratchlist-equiv
      (scratchlist-equiv (cons (scratchobj-fix x) y)
                         (cons x y)))

    Theorem: cons-scratchobj-equiv-congruence-on-x-under-scratchlist-equiv

    (defthm
          cons-scratchobj-equiv-congruence-on-x-under-scratchlist-equiv
      (implies (scratchobj-equiv x x-equiv)
               (scratchlist-equiv (cons x y)
                                  (cons x-equiv y)))
      :rule-classes :congruence)

    Theorem: cons-of-scratchlist-fix-y-under-scratchlist-equiv

    (defthm cons-of-scratchlist-fix-y-under-scratchlist-equiv
      (scratchlist-equiv (cons x (scratchlist-fix y))
                         (cons x y)))

    Theorem: cons-scratchlist-equiv-congruence-on-y-under-scratchlist-equiv

    (defthm
         cons-scratchlist-equiv-congruence-on-y-under-scratchlist-equiv
      (implies (scratchlist-equiv y y-equiv)
               (scratchlist-equiv (cons x y)
                                  (cons x y-equiv)))
      :rule-classes :congruence)

    Theorem: consp-of-scratchlist-fix

    (defthm consp-of-scratchlist-fix
      (equal (consp (scratchlist-fix x))
             (consp x)))

    Theorem: scratchlist-fix-under-iff

    (defthm scratchlist-fix-under-iff
      (iff (scratchlist-fix x) (consp x)))

    Theorem: scratchlist-fix-of-cons

    (defthm scratchlist-fix-of-cons
      (equal (scratchlist-fix (cons a x))
             (cons (scratchobj-fix a)
                   (scratchlist-fix x))))

    Theorem: len-of-scratchlist-fix

    (defthm len-of-scratchlist-fix
      (equal (len (scratchlist-fix x))
             (len x)))

    Theorem: scratchlist-fix-of-append

    (defthm scratchlist-fix-of-append
      (equal (scratchlist-fix (append std::a std::b))
             (append (scratchlist-fix std::a)
                     (scratchlist-fix std::b))))

    Theorem: scratchlist-fix-of-repeat

    (defthm scratchlist-fix-of-repeat
      (equal (scratchlist-fix (acl2::repeat n x))
             (acl2::repeat n (scratchobj-fix x))))

    Theorem: list-equiv-refines-scratchlist-equiv

    (defthm list-equiv-refines-scratchlist-equiv
      (implies (acl2::list-equiv x y)
               (scratchlist-equiv x y))
      :rule-classes :refinement)

    Theorem: nth-of-scratchlist-fix

    (defthm nth-of-scratchlist-fix
      (equal (nth n (scratchlist-fix x))
             (if (< (nfix n) (len x))
                 (scratchobj-fix (nth n x))
               nil)))

    Theorem: scratchlist-equiv-implies-scratchlist-equiv-append-1

    (defthm scratchlist-equiv-implies-scratchlist-equiv-append-1
      (implies (scratchlist-equiv x fty::x-equiv)
               (scratchlist-equiv (append x y)
                                  (append fty::x-equiv y)))
      :rule-classes (:congruence))

    Theorem: scratchlist-equiv-implies-scratchlist-equiv-append-2

    (defthm scratchlist-equiv-implies-scratchlist-equiv-append-2
      (implies (scratchlist-equiv y fty::y-equiv)
               (scratchlist-equiv (append x y)
                                  (append x fty::y-equiv)))
      :rule-classes (:congruence))

    Theorem: scratchlist-equiv-implies-scratchlist-equiv-nthcdr-2

    (defthm scratchlist-equiv-implies-scratchlist-equiv-nthcdr-2
      (implies (scratchlist-equiv l l-equiv)
               (scratchlist-equiv (nthcdr n l)
                                  (nthcdr n l-equiv)))
      :rule-classes (:congruence))

    Theorem: scratchlist-equiv-implies-scratchlist-equiv-take-2

    (defthm scratchlist-equiv-implies-scratchlist-equiv-take-2
      (implies (scratchlist-equiv l l-equiv)
               (scratchlist-equiv (take n l)
                                  (take n l-equiv)))
      :rule-classes (:congruence))