Update the |ACL2|::|HIDE| field of a interp-flags bit structure.
(!interp-flags->hide hide x) → new-x
Function:
(defun !interp-flags->hide (hide x) (declare (xargs :guard (and (booleanp hide) (interp-flags-p x)))) (mbe :logic (b* ((hide (bool->bit hide)) (x (interp-flags-fix x))) (acl2::part-install hide x :width 1 :low 4)) :exec (the (unsigned-byte 5) (logior (the (unsigned-byte 5) (logand (the (unsigned-byte 5) x) (the (signed-byte 6) -17))) (the (unsigned-byte 5) (ash (the (unsigned-byte 1) (bool->bit hide)) 4))))))
Theorem:
(defthm interp-flags-p-of-!interp-flags->hide (b* ((new-x (!interp-flags->hide hide x))) (interp-flags-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !interp-flags->hide-of-bool-fix-hide (equal (!interp-flags->hide (bool-fix hide) x) (!interp-flags->hide hide x)))
Theorem:
(defthm !interp-flags->hide-iff-congruence-on-hide (implies (iff hide hide-equiv) (equal (!interp-flags->hide hide x) (!interp-flags->hide hide-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !interp-flags->hide-of-interp-flags-fix-x (equal (!interp-flags->hide hide (interp-flags-fix x)) (!interp-flags->hide hide x)))
Theorem:
(defthm !interp-flags->hide-interp-flags-equiv-congruence-on-x (implies (interp-flags-equiv x x-equiv) (equal (!interp-flags->hide hide x) (!interp-flags->hide hide x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !interp-flags->hide-is-interp-flags (equal (!interp-flags->hide hide x) (change-interp-flags x :hide hide)))
Theorem:
(defthm interp-flags->hide-of-!interp-flags->hide (b* ((?new-x (!interp-flags->hide hide x))) (equal (interp-flags->hide new-x) (bool-fix hide))))
Theorem:
(defthm !interp-flags->hide-equiv-under-mask (b* ((?new-x (!interp-flags->hide hide x))) (interp-flags-equiv-under-mask new-x x 15)))