Abstract a
(abs-function-declaration tree) → fundef
Function:
(defun abs-function-declaration (tree) (declare (xargs :guard (abnf::treep tree))) (let ((__function__ 'abs-function-declaration)) (declare (ignorable __function__)) (b* (((okf (abnf::tree-list-tuple9 sub)) (abnf::check-tree-nonleaf-9 tree "function-declaration")) ((okf anns) (abs-*-annotation sub.1st)) ((okf tree) (abnf::check-tree-list-1 sub.2nd)) ((okf &) (abnf::check-tree-schars tree "function")) ((okf tree) (abnf::check-tree-list-1 sub.3rd)) ((okf name) (abs-identifier tree)) ((okf tree) (abnf::check-tree-list-1 sub.4th)) ((okf &) (abnf::check-tree-schars tree "(")) ((okf tree) (abnf::check-tree-list-1 sub.5th)) ((okf params) (abs-?-function-parameters tree)) ((okf tree) (abnf::check-tree-list-1 sub.6th)) ((okf &) (abnf::check-tree-schars tree ")")) ((okf tree) (abnf::check-tree-list-1 sub.7th)) ((okf &) (abnf::check-tree-schars tree "->")) ((okf tree) (abnf::check-tree-list-1 sub.8th)) ((okf type) (abs-type tree)) ((okf tree) (abnf::check-tree-list-1 sub.9th)) ((okf body) (abs-block tree))) (make-fundecl :annotations anns :sort (fun-sort-standard) :name name :inputs params :output type :body body))))
Theorem:
(defthm fundecl-resultp-of-abs-function-declaration (b* ((fundef (abs-function-declaration tree))) (fundecl-resultp fundef)) :rule-classes :rewrite)
Theorem:
(defthm abs-function-declaration-of-tree-fix-tree (equal (abs-function-declaration (abnf::tree-fix tree)) (abs-function-declaration tree)))
Theorem:
(defthm abs-function-declaration-tree-equiv-congruence-on-tree (implies (abnf::tree-equiv tree tree-equiv) (equal (abs-function-declaration tree) (abs-function-declaration tree-equiv))) :rule-classes :congruence)