Abstract an
(abs-output-item tree) → outitem
Function:
(defun abs-output-item (tree) (declare (xargs :guard (abnf::treep tree))) (let ((__function__ 'abs-output-item)) (declare (ignorable __function__)) (b* (((okf (abnf::tree-list-tuple2 sub)) (abnf::check-tree-nonleaf-2 tree "output-item")) ((okf tree) (abnf::check-tree-list-1 sub.1st)) ((okf outexpr) (abs-output-expression tree)) ((okf tree) (abnf::check-tree-list-1 sub.2nd)) ((okf &) (abnf::check-tree-ichars tree ";"))) (output-item outexpr))))
Theorem:
(defthm output-item-resultp-of-abs-output-item (b* ((outitem (abs-output-item tree))) (output-item-resultp outitem)) :rule-classes :rewrite)
Theorem:
(defthm abs-output-item-of-tree-fix-tree (equal (abs-output-item (abnf::tree-fix tree)) (abs-output-item tree)))
Theorem:
(defthm abs-output-item-tree-equiv-congruence-on-tree (implies (abnf::tree-equiv tree tree-equiv) (equal (abs-output-item tree) (abs-output-item tree-equiv))) :rule-classes :congruence)