Abstract a
(abs-struct-component-declarations tree) → ret-comps
Function:
(defun abs-struct-component-declarations (tree) (declare (xargs :guard (abnf::treep tree))) (let ((__function__ 'abs-struct-component-declarations)) (declare (ignorable __function__)) (b* (((okf (abnf::tree-list-tuple3 sub)) (abnf::check-tree-nonleaf-3 tree "struct-component-declarations")) ((okf tree) (abnf::check-tree-list-1 sub.1st)) ((okf comp) (abs-struct-component-declaration tree)) ((okf comps) (abs-*-comma-struct-component-declaration sub.2nd)) ((okf tree) (abnf::check-tree-list-1 sub.3rd)) ((okf &) (check-?-comma tree))) (cons comp comps))))
Theorem:
(defthm compdecl-list-resultp-of-abs-struct-component-declarations (b* ((ret-comps (abs-struct-component-declarations tree))) (compdecl-list-resultp ret-comps)) :rule-classes :rewrite)
Theorem:
(defthm compdecl-listp-of-abs-struct-component-declarations (b* ((?ret-comps (abs-struct-component-declarations tree))) (implies (not (reserrp ret-comps)) (compdecl-listp ret-comps))))
Theorem:
(defthm abs-struct-component-declarations-of-tree-fix-tree (equal (abs-struct-component-declarations (abnf::tree-fix tree)) (abs-struct-component-declarations tree)))
Theorem:
(defthm abs-struct-component-declarations-tree-equiv-congruence-on-tree (implies (abnf::tree-equiv tree tree-equiv) (equal (abs-struct-component-declarations tree) (abs-struct-component-declarations tree-equiv))) :rule-classes :congruence)