Fixing function for coordinate structures.
(coordinate-fix x) → new-x
Function:
(defun coordinate-fix$inline (x) (declare (xargs :guard (coordinatep x))) (let ((__function__ 'coordinate-fix)) (declare (ignorable __function__)) (mbe :logic (case (coordinate-kind x) (:explicit (b* ((get (ifix (std::da-nth 0 (cdr x))))) (cons :explicit (list get)))) (:sign-high (cons :sign-high (list))) (:sign-low (cons :sign-low (list))) (:inferred (cons :inferred (list)))) :exec x)))
Theorem:
(defthm coordinatep-of-coordinate-fix (b* ((new-x (coordinate-fix$inline x))) (coordinatep new-x)) :rule-classes :rewrite)
Theorem:
(defthm coordinate-fix-when-coordinatep (implies (coordinatep x) (equal (coordinate-fix x) x)))
Function:
(defun coordinate-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (coordinatep acl2::x) (coordinatep acl2::y)))) (equal (coordinate-fix acl2::x) (coordinate-fix acl2::y)))
Theorem:
(defthm coordinate-equiv-is-an-equivalence (and (booleanp (coordinate-equiv x y)) (coordinate-equiv x x) (implies (coordinate-equiv x y) (coordinate-equiv y x)) (implies (and (coordinate-equiv x y) (coordinate-equiv y z)) (coordinate-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm coordinate-equiv-implies-equal-coordinate-fix-1 (implies (coordinate-equiv acl2::x x-equiv) (equal (coordinate-fix acl2::x) (coordinate-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm coordinate-fix-under-coordinate-equiv (coordinate-equiv (coordinate-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-coordinate-fix-1-forward-to-coordinate-equiv (implies (equal (coordinate-fix acl2::x) acl2::y) (coordinate-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-coordinate-fix-2-forward-to-coordinate-equiv (implies (equal acl2::x (coordinate-fix acl2::y)) (coordinate-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm coordinate-equiv-of-coordinate-fix-1-forward (implies (coordinate-equiv (coordinate-fix acl2::x) acl2::y) (coordinate-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm coordinate-equiv-of-coordinate-fix-2-forward (implies (coordinate-equiv acl2::x (coordinate-fix acl2::y)) (coordinate-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm coordinate-kind$inline-of-coordinate-fix-x (equal (coordinate-kind$inline (coordinate-fix x)) (coordinate-kind$inline x)))
Theorem:
(defthm coordinate-kind$inline-coordinate-equiv-congruence-on-x (implies (coordinate-equiv x x-equiv) (equal (coordinate-kind$inline x) (coordinate-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-coordinate-fix (consp (coordinate-fix x)) :rule-classes :type-prescription)