Basic equivalence relation for fenv structures.
Function:
(defun fenv-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (fenvp acl2::x) (fenvp acl2::y)))) (equal (fenv-fix acl2::x) (fenv-fix acl2::y)))
Theorem:
(defthm fenv-equiv-is-an-equivalence (and (booleanp (fenv-equiv x y)) (fenv-equiv x x) (implies (fenv-equiv x y) (fenv-equiv y x)) (implies (and (fenv-equiv x y) (fenv-equiv y z)) (fenv-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm fenv-equiv-implies-equal-fenv-fix-1 (implies (fenv-equiv acl2::x x-equiv) (equal (fenv-fix acl2::x) (fenv-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm fenv-fix-under-fenv-equiv (fenv-equiv (fenv-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-fenv-fix-1-forward-to-fenv-equiv (implies (equal (fenv-fix acl2::x) acl2::y) (fenv-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-fenv-fix-2-forward-to-fenv-equiv (implies (equal acl2::x (fenv-fix acl2::y)) (fenv-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm fenv-equiv-of-fenv-fix-1-forward (implies (fenv-equiv (fenv-fix acl2::x) acl2::y) (fenv-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm fenv-equiv-of-fenv-fix-2-forward (implies (fenv-equiv acl2::x (fenv-fix acl2::y)) (fenv-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)