Basic equivalence relation for funarg structures.
Function:
(defun funarg-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (funargp acl2::x) (funargp acl2::y)))) (equal (funarg-fix acl2::x) (funarg-fix acl2::y)))
Theorem:
(defthm funarg-equiv-is-an-equivalence (and (booleanp (funarg-equiv x y)) (funarg-equiv x x) (implies (funarg-equiv x y) (funarg-equiv y x)) (implies (and (funarg-equiv x y) (funarg-equiv y z)) (funarg-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm funarg-equiv-implies-equal-funarg-fix-1 (implies (funarg-equiv acl2::x x-equiv) (equal (funarg-fix acl2::x) (funarg-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm funarg-fix-under-funarg-equiv (funarg-equiv (funarg-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-funarg-fix-1-forward-to-funarg-equiv (implies (equal (funarg-fix acl2::x) acl2::y) (funarg-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-funarg-fix-2-forward-to-funarg-equiv (implies (equal acl2::x (funarg-fix acl2::y)) (funarg-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm funarg-equiv-of-funarg-fix-1-forward (implies (funarg-equiv (funarg-fix acl2::x) acl2::y) (funarg-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm funarg-equiv-of-funarg-fix-2-forward (implies (funarg-equiv acl2::x (funarg-fix acl2::y)) (funarg-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)