(ident-senv-fix x) is a usual ACL2::fty omap fixing function.
(ident-senv-fix x) → *
Function:
(defun ident-senv-fix (x) (declare (xargs :guard (ident-senvp x))) (mbe :logic (if (ident-senvp x) x nil) :exec x))
Theorem:
(defthm ident-senvp-of-ident-senv-fix (ident-senvp (ident-senv-fix x)))
Theorem:
(defthm ident-senv-fix-when-ident-senvp (implies (ident-senvp x) (equal (ident-senv-fix x) x)))
Theorem:
(defthm emptyp-ident-senv-fix (implies (or (omap::emptyp x) (not (ident-senvp x))) (omap::emptyp (ident-senv-fix x))))
Theorem:
(defthm emptyp-of-ident-senv-fix-to-not-ident-senv-or-emptyp (equal (omap::emptyp (ident-senv-fix x)) (or (not (ident-senvp x)) (omap::emptyp x))))
Function:
(defun ident-senv-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (ident-senvp acl2::x) (ident-senvp acl2::y)))) (equal (ident-senv-fix acl2::x) (ident-senv-fix acl2::y)))
Theorem:
(defthm ident-senv-equiv-is-an-equivalence (and (booleanp (ident-senv-equiv x y)) (ident-senv-equiv x x) (implies (ident-senv-equiv x y) (ident-senv-equiv y x)) (implies (and (ident-senv-equiv x y) (ident-senv-equiv y z)) (ident-senv-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm ident-senv-equiv-implies-equal-ident-senv-fix-1 (implies (ident-senv-equiv acl2::x x-equiv) (equal (ident-senv-fix acl2::x) (ident-senv-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm ident-senv-fix-under-ident-senv-equiv (ident-senv-equiv (ident-senv-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-ident-senv-fix-1-forward-to-ident-senv-equiv (implies (equal (ident-senv-fix acl2::x) acl2::y) (ident-senv-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-ident-senv-fix-2-forward-to-ident-senv-equiv (implies (equal acl2::x (ident-senv-fix acl2::y)) (ident-senv-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm ident-senv-equiv-of-ident-senv-fix-1-forward (implies (ident-senv-equiv (ident-senv-fix acl2::x) acl2::y) (ident-senv-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm ident-senv-equiv-of-ident-senv-fix-2-forward (implies (ident-senv-equiv acl2::x (ident-senv-fix acl2::y)) (ident-senv-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)