Basic equivalence relation for importdecl structures.
Function:
(defun importdecl-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (importdeclp acl2::x) (importdeclp acl2::y)))) (equal (importdecl-fix acl2::x) (importdecl-fix acl2::y)))
Theorem:
(defthm importdecl-equiv-is-an-equivalence (and (booleanp (importdecl-equiv x y)) (importdecl-equiv x x) (implies (importdecl-equiv x y) (importdecl-equiv y x)) (implies (and (importdecl-equiv x y) (importdecl-equiv y z)) (importdecl-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm importdecl-equiv-implies-equal-importdecl-fix-1 (implies (importdecl-equiv acl2::x x-equiv) (equal (importdecl-fix acl2::x) (importdecl-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm importdecl-fix-under-importdecl-equiv (importdecl-equiv (importdecl-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-importdecl-fix-1-forward-to-importdecl-equiv (implies (equal (importdecl-fix acl2::x) acl2::y) (importdecl-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-importdecl-fix-2-forward-to-importdecl-equiv (implies (equal acl2::x (importdecl-fix acl2::y)) (importdecl-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm importdecl-equiv-of-importdecl-fix-1-forward (implies (importdecl-equiv (importdecl-fix acl2::x) acl2::y) (importdecl-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm importdecl-equiv-of-importdecl-fix-2-forward (implies (importdecl-equiv acl2::x (importdecl-fix acl2::y)) (importdecl-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)