Fixing function for input-section structures.
(input-section-fix x) → new-x
Function:
(defun input-section-fix$inline (x) (declare (xargs :guard (input-sectionp x))) (let ((__function__ 'input-section-fix)) (declare (ignorable __function__)) (mbe :logic (b* ((title (input-title-fix (cdr (std::da-nth 0 (cdr x))))) (items (input-item-list-fix (cdr (std::da-nth 1 (cdr x)))))) (cons :input-section (list (cons 'title title) (cons 'items items)))) :exec x)))
Theorem:
(defthm input-sectionp-of-input-section-fix (b* ((new-x (input-section-fix$inline x))) (input-sectionp new-x)) :rule-classes :rewrite)
Theorem:
(defthm input-section-fix-when-input-sectionp (implies (input-sectionp x) (equal (input-section-fix x) x)))
Function:
(defun input-section-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (input-sectionp acl2::x) (input-sectionp acl2::y)))) (equal (input-section-fix acl2::x) (input-section-fix acl2::y)))
Theorem:
(defthm input-section-equiv-is-an-equivalence (and (booleanp (input-section-equiv x y)) (input-section-equiv x x) (implies (input-section-equiv x y) (input-section-equiv y x)) (implies (and (input-section-equiv x y) (input-section-equiv y z)) (input-section-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm input-section-equiv-implies-equal-input-section-fix-1 (implies (input-section-equiv acl2::x x-equiv) (equal (input-section-fix acl2::x) (input-section-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm input-section-fix-under-input-section-equiv (input-section-equiv (input-section-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-input-section-fix-1-forward-to-input-section-equiv (implies (equal (input-section-fix acl2::x) acl2::y) (input-section-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-input-section-fix-2-forward-to-input-section-equiv (implies (equal acl2::x (input-section-fix acl2::y)) (input-section-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm input-section-equiv-of-input-section-fix-1-forward (implies (input-section-equiv (input-section-fix acl2::x) acl2::y) (input-section-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm input-section-equiv-of-input-section-fix-2-forward (implies (input-section-equiv acl2::x (input-section-fix acl2::y)) (input-section-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)