Leo integer wrapped exponentiation operation.
(op-int-pow-wrapped left right) → result
Function:
(defun op-int-pow-wrapped (left right) (declare (xargs :guard (and (int-valuep left) (int-valuep right)))) (let ((__function__ 'op-int-pow-wrapped)) (declare (ignorable __function__)) (b* ((err (reserrf (list :op-int-pow-wrapped (value-fix left) (value-fix right)))) ((unless (member-eq (value-kind right) '(:u8 :u16 :u32))) err) (left-int (int-value-to-int left)) (right-int (int-value-to-int right)) (res (expt left-int right-int))) (cond ((value-case left :u8) (value-u8 (loghead 8 res))) ((value-case left :u16) (value-u16 (loghead 16 res))) ((value-case left :u32) (value-u32 (loghead 32 res))) ((value-case left :u64) (value-u64 (loghead 64 res))) ((value-case left :u128) (value-u128 (loghead 128 res))) ((value-case left :i8) (value-i8 (logext 8 res))) ((value-case left :i16) (value-i16 (logext 16 res))) ((value-case left :i32) (value-i32 (logext 32 res))) ((value-case left :i64) (value-i64 (logext 64 res))) ((value-case left :i128) (value-i128 (logext 128 res))) (t (reserrf (impossible)))))))
Theorem:
(defthm value-resultp-of-op-int-pow-wrapped (b* ((result (op-int-pow-wrapped left right))) (value-resultp result)) :rule-classes :rewrite)
Theorem:
(defthm op-int-pow-wrapped-of-value-fix-left (equal (op-int-pow-wrapped (value-fix left) right) (op-int-pow-wrapped left right)))
Theorem:
(defthm op-int-pow-wrapped-value-equiv-congruence-on-left (implies (value-equiv left left-equiv) (equal (op-int-pow-wrapped left right) (op-int-pow-wrapped left-equiv right))) :rule-classes :congruence)
Theorem:
(defthm op-int-pow-wrapped-of-value-fix-right (equal (op-int-pow-wrapped left (value-fix right)) (op-int-pow-wrapped left right)))
Theorem:
(defthm op-int-pow-wrapped-value-equiv-congruence-on-right (implies (value-equiv right right-equiv) (equal (op-int-pow-wrapped left right) (op-int-pow-wrapped left right-equiv))) :rule-classes :congruence)