Fixing function for output-item structures.
(output-item-fix x) → new-x
Function:
(defun output-item-fix$inline (x) (declare (xargs :guard (output-itemp x))) (let ((__function__ 'output-item-fix)) (declare (ignorable __function__)) (mbe :logic (b* ((get (output-expression-fix (cdr (std::da-nth 0 (cdr x)))))) (cons :output-item (list (cons 'get get)))) :exec x)))
Theorem:
(defthm output-itemp-of-output-item-fix (b* ((new-x (output-item-fix$inline x))) (output-itemp new-x)) :rule-classes :rewrite)
Theorem:
(defthm output-item-fix-when-output-itemp (implies (output-itemp x) (equal (output-item-fix x) x)))
Function:
(defun output-item-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (output-itemp acl2::x) (output-itemp acl2::y)))) (equal (output-item-fix acl2::x) (output-item-fix acl2::y)))
Theorem:
(defthm output-item-equiv-is-an-equivalence (and (booleanp (output-item-equiv x y)) (output-item-equiv x x) (implies (output-item-equiv x y) (output-item-equiv y x)) (implies (and (output-item-equiv x y) (output-item-equiv y z)) (output-item-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm output-item-equiv-implies-equal-output-item-fix-1 (implies (output-item-equiv acl2::x x-equiv) (equal (output-item-fix acl2::x) (output-item-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm output-item-fix-under-output-item-equiv (output-item-equiv (output-item-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-output-item-fix-1-forward-to-output-item-equiv (implies (equal (output-item-fix acl2::x) acl2::y) (output-item-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-output-item-fix-2-forward-to-output-item-equiv (implies (equal acl2::x (output-item-fix acl2::y)) (output-item-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm output-item-equiv-of-output-item-fix-1-forward (implies (output-item-equiv (output-item-fix acl2::x) acl2::y) (output-item-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm output-item-equiv-of-output-item-fix-2-forward (implies (output-item-equiv acl2::x (output-item-fix acl2::y)) (output-item-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)