Basic equivalence relation for output-section structures.
Function:
(defun output-section-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (output-sectionp acl2::x) (output-sectionp acl2::y)))) (equal (output-section-fix acl2::x) (output-section-fix acl2::y)))
Theorem:
(defthm output-section-equiv-is-an-equivalence (and (booleanp (output-section-equiv x y)) (output-section-equiv x x) (implies (output-section-equiv x y) (output-section-equiv y x)) (implies (and (output-section-equiv x y) (output-section-equiv y z)) (output-section-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm output-section-equiv-implies-equal-output-section-fix-1 (implies (output-section-equiv acl2::x x-equiv) (equal (output-section-fix acl2::x) (output-section-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm output-section-fix-under-output-section-equiv (output-section-equiv (output-section-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-output-section-fix-1-forward-to-output-section-equiv (implies (equal (output-section-fix acl2::x) acl2::y) (output-section-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-output-section-fix-2-forward-to-output-section-equiv (implies (equal acl2::x (output-section-fix acl2::y)) (output-section-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm output-section-equiv-of-output-section-fix-1-forward (implies (output-section-equiv (output-section-fix acl2::x) acl2::y) (output-section-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm output-section-equiv-of-output-section-fix-2-forward (implies (output-section-equiv acl2::x (output-section-fix acl2::y)) (output-section-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)