Basic equivalence relation for vardecl structures.
Function:
(defun vardecl-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (vardeclp acl2::x) (vardeclp acl2::y)))) (equal (vardecl-fix acl2::x) (vardecl-fix acl2::y)))
Theorem:
(defthm vardecl-equiv-is-an-equivalence (and (booleanp (vardecl-equiv x y)) (vardecl-equiv x x) (implies (vardecl-equiv x y) (vardecl-equiv y x)) (implies (and (vardecl-equiv x y) (vardecl-equiv y z)) (vardecl-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm vardecl-equiv-implies-equal-vardecl-fix-1 (implies (vardecl-equiv acl2::x x-equiv) (equal (vardecl-fix acl2::x) (vardecl-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm vardecl-fix-under-vardecl-equiv (vardecl-equiv (vardecl-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-vardecl-fix-1-forward-to-vardecl-equiv (implies (equal (vardecl-fix acl2::x) acl2::y) (vardecl-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-vardecl-fix-2-forward-to-vardecl-equiv (implies (equal acl2::x (vardecl-fix acl2::y)) (vardecl-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm vardecl-equiv-of-vardecl-fix-1-forward (implies (vardecl-equiv (vardecl-fix acl2::x) acl2::y) (vardecl-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm vardecl-equiv-of-vardecl-fix-2-forward (implies (vardecl-equiv acl2::x (vardecl-fix acl2::y)) (vardecl-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)