Basic equivalence relation for name-set structures.
Function:
(defun name-set-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (name-setp acl2::x) (name-setp acl2::y)))) (equal (name-set-fix acl2::x) (name-set-fix acl2::y)))
Theorem:
(defthm name-set-equiv-is-an-equivalence (and (booleanp (name-set-equiv x y)) (name-set-equiv x x) (implies (name-set-equiv x y) (name-set-equiv y x)) (implies (and (name-set-equiv x y) (name-set-equiv y z)) (name-set-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm name-set-equiv-implies-equal-name-set-fix-1 (implies (name-set-equiv acl2::x x-equiv) (equal (name-set-fix acl2::x) (name-set-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm name-set-fix-under-name-set-equiv (name-set-equiv (name-set-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-name-set-fix-1-forward-to-name-set-equiv (implies (equal (name-set-fix acl2::x) acl2::y) (name-set-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-name-set-fix-2-forward-to-name-set-equiv (implies (equal acl2::x (name-set-fix acl2::y)) (name-set-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm name-set-equiv-of-name-set-fix-1-forward (implies (name-set-equiv (name-set-fix acl2::x) acl2::y) (name-set-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm name-set-equiv-of-name-set-fix-2-forward (implies (name-set-equiv acl2::x (name-set-fix acl2::y)) (name-set-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)