• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
      • Aig
      • Satlink
        • Sat-solver-options
        • Config-p
        • Logical-story
        • Dimacs
        • Gather-benchmarks
        • Cnf
          • Litp
            • Lit-negate-cond
            • Lit-negate
            • Make-lit
            • Lit-equiv
            • Lit->var
            • Lit->neg
            • Lit-list
              • Lit-list-fix
              • Lit-listp
              • Lit-list-equiv
              • Maybe-litp
              • Lit-fix
              • Lit-list-list
            • Varp
            • Env$
            • Eval-formula
            • Max-index-formula
            • Max-index-clause
            • Formula-indices
            • Clause-indices
          • Satlink-extra-hook
          • Sat
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Community
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Lit-list

    Lit-list-equiv

    Basic equivalence relation for lit-list structures.

    Definitions and Theorems

    Function: lit-list-equiv$inline

    (defun lit-list-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (lit-listp acl2::x)
                                  (lit-listp acl2::y))))
      (equal (lit-list-fix acl2::x)
             (lit-list-fix acl2::y)))

    Theorem: lit-list-equiv-is-an-equivalence

    (defthm lit-list-equiv-is-an-equivalence
      (and (booleanp (lit-list-equiv x y))
           (lit-list-equiv x x)
           (implies (lit-list-equiv x y)
                    (lit-list-equiv y x))
           (implies (and (lit-list-equiv x y)
                         (lit-list-equiv y z))
                    (lit-list-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: lit-list-equiv-implies-equal-lit-list-fix-1

    (defthm lit-list-equiv-implies-equal-lit-list-fix-1
      (implies (lit-list-equiv acl2::x x-equiv)
               (equal (lit-list-fix acl2::x)
                      (lit-list-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: lit-list-fix-under-lit-list-equiv

    (defthm lit-list-fix-under-lit-list-equiv
      (lit-list-equiv (lit-list-fix acl2::x)
                      acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-lit-list-fix-1-forward-to-lit-list-equiv

    (defthm equal-of-lit-list-fix-1-forward-to-lit-list-equiv
      (implies (equal (lit-list-fix acl2::x) acl2::y)
               (lit-list-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-lit-list-fix-2-forward-to-lit-list-equiv

    (defthm equal-of-lit-list-fix-2-forward-to-lit-list-equiv
      (implies (equal acl2::x (lit-list-fix acl2::y))
               (lit-list-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: lit-list-equiv-of-lit-list-fix-1-forward

    (defthm lit-list-equiv-of-lit-list-fix-1-forward
      (implies (lit-list-equiv (lit-list-fix acl2::x)
                               acl2::y)
               (lit-list-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: lit-list-equiv-of-lit-list-fix-2-forward

    (defthm lit-list-equiv-of-lit-list-fix-2-forward
      (implies (lit-list-equiv acl2::x (lit-list-fix acl2::y))
               (lit-list-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)