• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
        • Z3-installation
        • Smt-hint
        • Tutorial
        • Status
        • Developer
          • Verified
            • Uninterpreted-fn-cp
            • Smt-hint-interface
              • Smtlink-hint
                • Smtlink-hint-p
                • Make-smtlink-hint
                • Func
                • Smtlink-hint-fix
                • Maybe-smtlink-hint
                • Hint-pair
                • Decl
                • Binding
                  • Binding-fix
                  • Binding-equiv
                  • Make-binding
                  • Change-binding
                  • Binding->type
                  • Binding->expr
                  • Binding->var
                  • Binding-p
                  • Binding-list
                    • Binding-list-fix
                      • Binding-list-equiv
                      • Binding-listp
                  • Smtlink-hint-equiv
                  • Let-binding
                  • Change-smtlink-hint
                  • Smtlink-hint->expanded-clause-w/-hint
                  • Smtlink-hint->type-decl-list
                  • Smtlink-hint->fast-functions
                  • Smtlink-hint->expanded-g/type
                  • Smtlink-hint->smt-params
                  • Smtlink-hint->let-binding
                  • Smtlink-hint->hypotheses
                  • Smtlink-hint->fty-info
                  • Smtlink-hint->wrld-fn-len
                  • Smtlink-hint->symbols
                  • Smtlink-hint->smt-fname
                  • Smtlink-hint->smt-dir
                  • Smtlink-hint->smt-cnf
                  • Smtlink-hint->rm-file
                  • Smtlink-hint->main-hint
                  • Smtlink-hint->int-to-rat
                  • Smtlink-hint->functions
                  • Smtlink-hint->fty-types
                  • Smtlink-hint->custom-p
                  • Smtlink-hint->fty
                  • Smtlink-hint->abs
                • Smt-hint
                • Make-alist-fn-lst
                • True-list-fix
              • Function-expansion
              • Smt-config
              • Fty-support
              • Smt-computed-hints
              • Add-hypo-cp
              • Smt-hint-please
              • Type-extract-cp
              • Smt-extract
              • Smtlink-process-user-hint
              • Smt-basics
              • Smt-type-hyp
              • Smt-magic-fix
            • Trusted
        • Abnf
        • Vwsim
        • Isar
        • Wp-gen
        • Dimacs-reader
        • Pfcs
        • Legacy-defrstobj
        • Proof-checker-array
        • Soft
        • C
        • Farray
        • Rp-rewriter
        • Riscv
        • Instant-runoff-voting
        • Imp-language
        • Sidekick
        • Leftist-trees
        • Java
        • Taspi
        • Bitcoin
        • Des
        • Ethereum
        • X86isa
        • Sha-2
        • Yul
        • Zcash
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Poseidon
        • Where-do-i-place-my-book
        • Axe
        • Aleo
        • Bigmems
        • Builtins
        • Execloader
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Community
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Binding-list

    Binding-list-fix

    (binding-list-fix x) is a usual ACL2::fty list fixing function.

    Signature
    (binding-list-fix x) → fty::newx
    Arguments
    x — Guard (binding-listp x).
    Returns
    fty::newx — Type (binding-listp fty::newx).

    In the logic, we apply binding-fix to each member of the x. In the execution, none of that is actually necessary and this is just an inlined identity function.

    Definitions and Theorems

    Function: binding-list-fix$inline

    (defun binding-list-fix$inline (x)
      (declare (xargs :guard (binding-listp x)))
      (let ((acl2::__function__ 'binding-list-fix))
        (declare (ignorable acl2::__function__))
        (mbe :logic
             (if (atom x)
                 nil
               (cons (binding-fix (car x))
                     (binding-list-fix (cdr x))))
             :exec x)))

    Theorem: binding-listp-of-binding-list-fix

    (defthm binding-listp-of-binding-list-fix
      (b* ((fty::newx (binding-list-fix$inline x)))
        (binding-listp fty::newx))
      :rule-classes :rewrite)

    Theorem: binding-list-fix-when-binding-listp

    (defthm binding-list-fix-when-binding-listp
      (implies (binding-listp x)
               (equal (binding-list-fix x) x)))

    Function: binding-list-equiv$inline

    (defun binding-list-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (binding-listp acl2::x)
                                  (binding-listp acl2::y))))
      (equal (binding-list-fix acl2::x)
             (binding-list-fix acl2::y)))

    Theorem: binding-list-equiv-is-an-equivalence

    (defthm binding-list-equiv-is-an-equivalence
      (and (booleanp (binding-list-equiv x y))
           (binding-list-equiv x x)
           (implies (binding-list-equiv x y)
                    (binding-list-equiv y x))
           (implies (and (binding-list-equiv x y)
                         (binding-list-equiv y z))
                    (binding-list-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: binding-list-equiv-implies-equal-binding-list-fix-1

    (defthm binding-list-equiv-implies-equal-binding-list-fix-1
      (implies (binding-list-equiv acl2::x x-equiv)
               (equal (binding-list-fix acl2::x)
                      (binding-list-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: binding-list-fix-under-binding-list-equiv

    (defthm binding-list-fix-under-binding-list-equiv
      (binding-list-equiv (binding-list-fix acl2::x)
                          acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-binding-list-fix-1-forward-to-binding-list-equiv

    (defthm equal-of-binding-list-fix-1-forward-to-binding-list-equiv
      (implies (equal (binding-list-fix acl2::x)
                      acl2::y)
               (binding-list-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-binding-list-fix-2-forward-to-binding-list-equiv

    (defthm equal-of-binding-list-fix-2-forward-to-binding-list-equiv
      (implies (equal acl2::x (binding-list-fix acl2::y))
               (binding-list-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: binding-list-equiv-of-binding-list-fix-1-forward

    (defthm binding-list-equiv-of-binding-list-fix-1-forward
      (implies (binding-list-equiv (binding-list-fix acl2::x)
                                   acl2::y)
               (binding-list-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: binding-list-equiv-of-binding-list-fix-2-forward

    (defthm binding-list-equiv-of-binding-list-fix-2-forward
      (implies (binding-list-equiv acl2::x (binding-list-fix acl2::y))
               (binding-list-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: car-of-binding-list-fix-x-under-binding-equiv

    (defthm car-of-binding-list-fix-x-under-binding-equiv
      (binding-equiv (car (binding-list-fix acl2::x))
                     (car acl2::x)))

    Theorem: car-binding-list-equiv-congruence-on-x-under-binding-equiv

    (defthm car-binding-list-equiv-congruence-on-x-under-binding-equiv
      (implies (binding-list-equiv acl2::x x-equiv)
               (binding-equiv (car acl2::x)
                              (car x-equiv)))
      :rule-classes :congruence)

    Theorem: cdr-of-binding-list-fix-x-under-binding-list-equiv

    (defthm cdr-of-binding-list-fix-x-under-binding-list-equiv
      (binding-list-equiv (cdr (binding-list-fix acl2::x))
                          (cdr acl2::x)))

    Theorem: cdr-binding-list-equiv-congruence-on-x-under-binding-list-equiv

    (defthm
        cdr-binding-list-equiv-congruence-on-x-under-binding-list-equiv
      (implies (binding-list-equiv acl2::x x-equiv)
               (binding-list-equiv (cdr acl2::x)
                                   (cdr x-equiv)))
      :rule-classes :congruence)

    Theorem: cons-of-binding-fix-x-under-binding-list-equiv

    (defthm cons-of-binding-fix-x-under-binding-list-equiv
      (binding-list-equiv (cons (binding-fix acl2::x) acl2::y)
                          (cons acl2::x acl2::y)))

    Theorem: cons-binding-equiv-congruence-on-x-under-binding-list-equiv

    (defthm cons-binding-equiv-congruence-on-x-under-binding-list-equiv
      (implies (binding-equiv acl2::x x-equiv)
               (binding-list-equiv (cons acl2::x acl2::y)
                                   (cons x-equiv acl2::y)))
      :rule-classes :congruence)

    Theorem: cons-of-binding-list-fix-y-under-binding-list-equiv

    (defthm cons-of-binding-list-fix-y-under-binding-list-equiv
      (binding-list-equiv (cons acl2::x (binding-list-fix acl2::y))
                          (cons acl2::x acl2::y)))

    Theorem: cons-binding-list-equiv-congruence-on-y-under-binding-list-equiv

    (defthm
       cons-binding-list-equiv-congruence-on-y-under-binding-list-equiv
      (implies (binding-list-equiv acl2::y y-equiv)
               (binding-list-equiv (cons acl2::x acl2::y)
                                   (cons acl2::x y-equiv)))
      :rule-classes :congruence)

    Theorem: consp-of-binding-list-fix

    (defthm consp-of-binding-list-fix
      (equal (consp (binding-list-fix acl2::x))
             (consp acl2::x)))

    Theorem: binding-list-fix-under-iff

    (defthm binding-list-fix-under-iff
      (iff (binding-list-fix acl2::x)
           (consp acl2::x)))

    Theorem: binding-list-fix-of-cons

    (defthm binding-list-fix-of-cons
      (equal (binding-list-fix (cons a x))
             (cons (binding-fix a)
                   (binding-list-fix x))))

    Theorem: len-of-binding-list-fix

    (defthm len-of-binding-list-fix
      (equal (len (binding-list-fix acl2::x))
             (len acl2::x)))

    Theorem: binding-list-fix-of-append

    (defthm binding-list-fix-of-append
      (equal (binding-list-fix (append std::a std::b))
             (append (binding-list-fix std::a)
                     (binding-list-fix std::b))))

    Theorem: binding-list-fix-of-repeat

    (defthm binding-list-fix-of-repeat
      (equal (binding-list-fix (acl2::repeat acl2::n acl2::x))
             (acl2::repeat acl2::n (binding-fix acl2::x))))

    Theorem: list-equiv-refines-binding-list-equiv

    (defthm list-equiv-refines-binding-list-equiv
      (implies (acl2::list-equiv acl2::x acl2::y)
               (binding-list-equiv acl2::x acl2::y))
      :rule-classes :refinement)

    Theorem: nth-of-binding-list-fix

    (defthm nth-of-binding-list-fix
      (equal (nth acl2::n (binding-list-fix acl2::x))
             (if (< (nfix acl2::n) (len acl2::x))
                 (binding-fix (nth acl2::n acl2::x))
               nil)))

    Theorem: binding-list-equiv-implies-binding-list-equiv-append-1

    (defthm binding-list-equiv-implies-binding-list-equiv-append-1
      (implies (binding-list-equiv acl2::x fty::x-equiv)
               (binding-list-equiv (append acl2::x acl2::y)
                                   (append fty::x-equiv acl2::y)))
      :rule-classes (:congruence))

    Theorem: binding-list-equiv-implies-binding-list-equiv-append-2

    (defthm binding-list-equiv-implies-binding-list-equiv-append-2
      (implies (binding-list-equiv acl2::y fty::y-equiv)
               (binding-list-equiv (append acl2::x acl2::y)
                                   (append acl2::x fty::y-equiv)))
      :rule-classes (:congruence))

    Theorem: binding-list-equiv-implies-binding-list-equiv-nthcdr-2

    (defthm binding-list-equiv-implies-binding-list-equiv-nthcdr-2
      (implies (binding-list-equiv acl2::l l-equiv)
               (binding-list-equiv (nthcdr acl2::n acl2::l)
                                   (nthcdr acl2::n l-equiv)))
      :rule-classes (:congruence))

    Theorem: binding-list-equiv-implies-binding-list-equiv-take-2

    (defthm binding-list-equiv-implies-binding-list-equiv-take-2
      (implies (binding-list-equiv acl2::l l-equiv)
               (binding-list-equiv (take acl2::n acl2::l)
                                   (take acl2::n l-equiv)))
      :rule-classes (:congruence))