• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
      • Std/lists
      • Std/alists
      • Obags
      • Std/util
      • Std/strings
        • Pretty-printing
        • Printtree
        • Base64
        • Charset-p
        • Strtok!
        • Cases
        • Concatenation
        • Html-encoding
        • Character-kinds
        • Substrings
        • Strtok
        • Equivalences
        • Url-encoding
        • Lines
        • Explode-implode-equalities
        • Ordering
        • Numbers
          • Decimal
            • Parse-nat-from-string
            • Parse-nat-from-charlist
            • Nat-to-dec-chars
            • Dec-digit-chars-value
            • Dec-digit-char-p
            • Dec-digit-char-listp
            • Take-leading-dec-digit-chars
              • Dec-digit-char-value
              • Dec-digit-char-list*p
              • Nat-to-dec-string-width
              • Nat-to-dec-string
              • Dec-digit-string-p
              • Strval
              • Skip-leading-digits
              • Nat-to-dec-string-size
              • Int-to-dec-string-width
              • Int-to-dec-string
              • Nonzero-dec-digit-char-p
              • Nat-to-dec-string-list
              • Int-to-dec-string-list
              • Revappend-nat-to-dec-chars
            • Hex
            • Octal
            • Binary
          • Pad-trim
          • Coercion
          • Std/strings/digit-to-char
          • Substitution
          • Symbols
        • Std/osets
        • Std/io
        • Std/basic
        • Std/system
        • Std/typed-lists
        • Std/bitsets
        • Std/testing
        • Std/typed-alists
        • Std/stobjs
      • Community
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Decimal

    Take-leading-dec-digit-chars

    Collect any leading digits from the start of a character list.

    Signature
    (take-leading-dec-digit-chars x) → head
    Returns
    head — Type (character-listp head), given (character-listp x).

    Definitions and Theorems

    Function: take-leading-dec-digit-chars

    (defun take-leading-dec-digit-chars (x)
      (declare (xargs :guard t))
      (let ((acl2::__function__ 'take-leading-dec-digit-chars))
        (declare (ignorable acl2::__function__))
        (cond ((atom x) nil)
              ((dec-digit-char-p (car x))
               (cons (car x)
                     (take-leading-dec-digit-chars (cdr x))))
              (t nil))))

    Theorem: character-listp-of-take-leading-dec-digit-chars

    (defthm character-listp-of-take-leading-dec-digit-chars
      (implies (character-listp x)
               (b* ((head (take-leading-dec-digit-chars x)))
                 (character-listp head)))
      :rule-classes :rewrite)

    Theorem: icharlisteqv-implies-equal-take-leading-dec-digit-chars-1

    (defthm icharlisteqv-implies-equal-take-leading-dec-digit-chars-1
      (implies (icharlisteqv x x-equiv)
               (equal (take-leading-dec-digit-chars x)
                      (take-leading-dec-digit-chars x-equiv)))
      :rule-classes (:congruence))

    Theorem: dec-digit-char-list*p-of-take-leading-dec-digit-chars

    (defthm dec-digit-char-list*p-of-take-leading-dec-digit-chars
      (dec-digit-char-list*p (take-leading-dec-digit-chars x)))

    Theorem: bound-of-len-of-take-leading-dec-digit-chars

    (defthm bound-of-len-of-take-leading-dec-digit-chars
      (<= (len (take-leading-dec-digit-chars x))
          (len x))
      :rule-classes :linear)

    Theorem: equal-of-take-leading-dec-digit-chars-and-length

    (defthm equal-of-take-leading-dec-digit-chars-and-length
      (equal (equal (len (take-leading-dec-digit-chars x))
                    (len x))
             (dec-digit-char-list*p x)))

    Theorem: take-leading-dec-digit-chars-when-dec-digit-char-list*p

    (defthm take-leading-dec-digit-chars-when-dec-digit-char-list*p
      (implies (dec-digit-char-list*p x)
               (equal (take-leading-dec-digit-chars x)
                      (list-fix x))))

    Theorem: consp-of-take-leading-dec-digit-chars

    (defthm consp-of-take-leading-dec-digit-chars
      (equal (consp (take-leading-dec-digit-chars x))
             (dec-digit-char-p (car x))))