• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Community
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
        • Svex-stvs
        • Svex-decomposition-methodology
        • Sv-versus-esim
        • Svex-decomp
        • Svex-compose-dfs
        • Svex-compilation
        • Moddb
        • Svmods
          • Address
          • Wire
          • Module
          • Lhs
            • Lhs.lisp
              • Lhs-vars-normorderedp
              • Lhs-norm
              • Lhatom-normorderedp
              • Lhs-normp
              • Svex-lhsrewrite-aux
              • Lhs-concat
              • Lhs-check-masks
              • Lhrange-combine
              • Svexarr-vars-aux
              • Assigns-check-masks
              • Svex->lhs-range
              • Svex-lhs-preproc-blkrev
              • Svarlist-boundedp-badguy
              • Driverlist-rest-after-strength
              • Aliases-normorderedp
              • Lhs-rsh
              • Lhs-cons
              • Svarlist-boundedp
              • Lhs-bitproj
              • Lhs-vars
              • Driver
              • Svex-override
              • Make-simple-lhs
              • Lhssvex-range-p
              • Lhs-override
              • Lhs-first-aux
              • Lhrange-combinable-dec
              • Lhrange-bitproj
              • Lhatom
              • Driverlist-values-of-strength
              • Lhs-rest-aux
              • Lhs-rest
              • Aliases-normorderedp-aux
              • Svexarr-vars
              • Lhsarr-to-svexarr
              • Svexarr-vars-witness-aux
              • Lhbit
              • Svex-lhsrewrite
              • Svar-boundedp
              • Lhs-decomp-aux
              • Svex->lhs-bound
              • Aliases-vars-aux
              • Svexarr
              • Svexarr-vars-witness
              • Svar-set-index
              • Lhsarr
              • Lhs-override-vars
              • Lhatom-eval-zero
              • Lhatom-bitproj
              • Lhrange-nextbit
              • Lhrange-combinable
              • Driverlist->svex
              • Svexlist-resolve
              • Lhs->svex-zero
              • Lhs-overridelist-vars
              • Lhs-overridelist-keys
              • Lhbit-eval
              • Driverlist-vars
              • Assigns-vars
              • Svex-int
              • Lhssvex-bounded-p
              • Lhslist-vars
              • Lhs-decomp
              • Lhatom-vars
              • Svar-map-vars
              • Lhssvex-unbounded-p
              • Lhspairs-vars
              • Lhs-width
              • Aliases-vars
              • Lhs-first
              • Svar-index
              • Assigns
              • Svar-indexedp
              • Lhspairs
              • Svex-overridelist
              • Lhslist
              • Lhs-overridelist
              • Driverlist
                • Driverlist-fix
                  • Driverlist-equiv
                  • Driverlist-p
                • Svex-lhs-preproc
                • Svexarr-fix
                • Lhsarr-fix
              • Lhs-p
              • Lhs-fix
              • Lhrange
              • Lhs-eval-zx
              • Lhs-equiv
              • Lhs-eval
              • Lhs->svex
            • Path
            • Svar-add-namespace
            • Design
            • Modinst
            • Lhs-add-namespace
            • Modalist
            • Path-add-namespace
            • Modname->submodnames
            • Name
            • Constraintlist-addr-p
            • Svex-alist-addr-p
            • Svar-map-addr-p
            • Lhspairs-addr-p
            • Modname
            • Assigns-addr-p
            • Lhs-addr-p
            • Lhatom-addr-p
            • Modhier-list-measure
            • Attributes
            • Modhier-measure
            • Modhier-list-measure-aux
            • Modhier-loopfreelist-p
            • Modhier-loopfree-p
          • Svstmt
          • Sv-tutorial
          • Expressions
          • Symbolic-test-vector
          • Vl-to-svex
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Driverlist

    Driverlist-fix

    (driverlist-fix x) is a usual fty list fixing function.

    Signature
    (driverlist-fix x) → fty::newx
    Arguments
    x — Guard (driverlist-p x).
    Returns
    fty::newx — Type (driverlist-p fty::newx).

    In the logic, we apply driver-fix to each member of the x. In the execution, none of that is actually necessary and this is just an inlined identity function.

    Definitions and Theorems

    Function: driverlist-fix$inline

    (defun driverlist-fix$inline (x)
      (declare (xargs :guard (driverlist-p x)))
      (let ((__function__ 'driverlist-fix))
        (declare (ignorable __function__))
        (mbe :logic
             (if (atom x)
                 x
               (cons (driver-fix (car x))
                     (driverlist-fix (cdr x))))
             :exec x)))

    Theorem: driverlist-p-of-driverlist-fix

    (defthm driverlist-p-of-driverlist-fix
      (b* ((fty::newx (driverlist-fix$inline x)))
        (driverlist-p fty::newx))
      :rule-classes :rewrite)

    Theorem: driverlist-fix-when-driverlist-p

    (defthm driverlist-fix-when-driverlist-p
      (implies (driverlist-p x)
               (equal (driverlist-fix x) x)))

    Function: driverlist-equiv$inline

    (defun driverlist-equiv$inline (x y)
      (declare (xargs :guard (and (driverlist-p x)
                                  (driverlist-p y))))
      (equal (driverlist-fix x)
             (driverlist-fix y)))

    Theorem: driverlist-equiv-is-an-equivalence

    (defthm driverlist-equiv-is-an-equivalence
      (and (booleanp (driverlist-equiv x y))
           (driverlist-equiv x x)
           (implies (driverlist-equiv x y)
                    (driverlist-equiv y x))
           (implies (and (driverlist-equiv x y)
                         (driverlist-equiv y z))
                    (driverlist-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: driverlist-equiv-implies-equal-driverlist-fix-1

    (defthm driverlist-equiv-implies-equal-driverlist-fix-1
      (implies (driverlist-equiv x x-equiv)
               (equal (driverlist-fix x)
                      (driverlist-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: driverlist-fix-under-driverlist-equiv

    (defthm driverlist-fix-under-driverlist-equiv
      (driverlist-equiv (driverlist-fix x) x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-driverlist-fix-1-forward-to-driverlist-equiv

    (defthm equal-of-driverlist-fix-1-forward-to-driverlist-equiv
      (implies (equal (driverlist-fix x) y)
               (driverlist-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-driverlist-fix-2-forward-to-driverlist-equiv

    (defthm equal-of-driverlist-fix-2-forward-to-driverlist-equiv
      (implies (equal x (driverlist-fix y))
               (driverlist-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: driverlist-equiv-of-driverlist-fix-1-forward

    (defthm driverlist-equiv-of-driverlist-fix-1-forward
      (implies (driverlist-equiv (driverlist-fix x) y)
               (driverlist-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: driverlist-equiv-of-driverlist-fix-2-forward

    (defthm driverlist-equiv-of-driverlist-fix-2-forward
      (implies (driverlist-equiv x (driverlist-fix y))
               (driverlist-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: car-of-driverlist-fix-x-under-driver-equiv

    (defthm car-of-driverlist-fix-x-under-driver-equiv
      (driver-equiv (car (driverlist-fix x))
                    (car x)))

    Theorem: car-driverlist-equiv-congruence-on-x-under-driver-equiv

    (defthm car-driverlist-equiv-congruence-on-x-under-driver-equiv
      (implies (driverlist-equiv x x-equiv)
               (driver-equiv (car x) (car x-equiv)))
      :rule-classes :congruence)

    Theorem: cdr-of-driverlist-fix-x-under-driverlist-equiv

    (defthm cdr-of-driverlist-fix-x-under-driverlist-equiv
      (driverlist-equiv (cdr (driverlist-fix x))
                        (cdr x)))

    Theorem: cdr-driverlist-equiv-congruence-on-x-under-driverlist-equiv

    (defthm cdr-driverlist-equiv-congruence-on-x-under-driverlist-equiv
      (implies (driverlist-equiv x x-equiv)
               (driverlist-equiv (cdr x)
                                 (cdr x-equiv)))
      :rule-classes :congruence)

    Theorem: cons-of-driver-fix-x-under-driverlist-equiv

    (defthm cons-of-driver-fix-x-under-driverlist-equiv
      (driverlist-equiv (cons (driver-fix x) y)
                        (cons x y)))

    Theorem: cons-driver-equiv-congruence-on-x-under-driverlist-equiv

    (defthm cons-driver-equiv-congruence-on-x-under-driverlist-equiv
      (implies (driver-equiv x x-equiv)
               (driverlist-equiv (cons x y)
                                 (cons x-equiv y)))
      :rule-classes :congruence)

    Theorem: cons-of-driverlist-fix-y-under-driverlist-equiv

    (defthm cons-of-driverlist-fix-y-under-driverlist-equiv
      (driverlist-equiv (cons x (driverlist-fix y))
                        (cons x y)))

    Theorem: cons-driverlist-equiv-congruence-on-y-under-driverlist-equiv

    (defthm cons-driverlist-equiv-congruence-on-y-under-driverlist-equiv
      (implies (driverlist-equiv y y-equiv)
               (driverlist-equiv (cons x y)
                                 (cons x y-equiv)))
      :rule-classes :congruence)

    Theorem: consp-of-driverlist-fix

    (defthm consp-of-driverlist-fix
      (equal (consp (driverlist-fix x))
             (consp x)))

    Theorem: driverlist-fix-of-cons

    (defthm driverlist-fix-of-cons
      (equal (driverlist-fix (cons a x))
             (cons (driver-fix a)
                   (driverlist-fix x))))

    Theorem: len-of-driverlist-fix

    (defthm len-of-driverlist-fix
      (equal (len (driverlist-fix x))
             (len x)))

    Theorem: driverlist-fix-of-append

    (defthm driverlist-fix-of-append
      (equal (driverlist-fix (append std::a std::b))
             (append (driverlist-fix std::a)
                     (driverlist-fix std::b))))

    Theorem: driverlist-fix-of-repeat

    (defthm driverlist-fix-of-repeat
      (equal (driverlist-fix (repeat acl2::n x))
             (repeat acl2::n (driver-fix x))))

    Theorem: nth-of-driverlist-fix

    (defthm nth-of-driverlist-fix
      (equal (nth acl2::n (driverlist-fix x))
             (if (< (nfix acl2::n) (len x))
                 (driver-fix (nth acl2::n x))
               nil)))

    Theorem: driverlist-equiv-implies-driverlist-equiv-append-1

    (defthm driverlist-equiv-implies-driverlist-equiv-append-1
      (implies (driverlist-equiv x fty::x-equiv)
               (driverlist-equiv (append x y)
                                 (append fty::x-equiv y)))
      :rule-classes (:congruence))

    Theorem: driverlist-equiv-implies-driverlist-equiv-append-2

    (defthm driverlist-equiv-implies-driverlist-equiv-append-2
      (implies (driverlist-equiv y fty::y-equiv)
               (driverlist-equiv (append x y)
                                 (append x fty::y-equiv)))
      :rule-classes (:congruence))

    Theorem: driverlist-equiv-implies-driverlist-equiv-nthcdr-2

    (defthm driverlist-equiv-implies-driverlist-equiv-nthcdr-2
      (implies (driverlist-equiv acl2::l l-equiv)
               (driverlist-equiv (nthcdr acl2::n acl2::l)
                                 (nthcdr acl2::n l-equiv)))
      :rule-classes (:congruence))

    Theorem: driverlist-equiv-implies-driverlist-equiv-take-2

    (defthm driverlist-equiv-implies-driverlist-equiv-take-2
      (implies (driverlist-equiv acl2::l l-equiv)
               (driverlist-equiv (take acl2::n acl2::l)
                                 (take acl2::n l-equiv)))
      :rule-classes (:congruence))