• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Community
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
        • Svex-stvs
        • Svex-decomposition-methodology
        • Sv-versus-esim
        • Svex-decomp
        • Svex-compose-dfs
        • Svex-compilation
        • Moddb
        • Svmods
          • Address
          • Wire
          • Module
          • Lhs
          • Path
          • Svar-add-namespace
          • Design
          • Modinst
          • Lhs-add-namespace
          • Modalist
            • Modalist-p
            • Modalist-fix
              • Modalist-vars
              • Modalist-equiv
              • Modalist->modnames
              • Modalist-lookup
              • Modalist-addr-p
            • Path-add-namespace
            • Modname->submodnames
            • Name
            • Constraintlist-addr-p
            • Svex-alist-addr-p
            • Svar-map-addr-p
            • Lhspairs-addr-p
            • Modname
            • Assigns-addr-p
            • Lhs-addr-p
            • Lhatom-addr-p
            • Modhier-list-measure
            • Attributes
            • Modhier-measure
            • Modhier-list-measure-aux
            • Modhier-loopfreelist-p
            • Modhier-loopfree-p
          • Svstmt
          • Sv-tutorial
          • Expressions
          • Symbolic-test-vector
          • Vl-to-svex
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Modalist

    Modalist-fix

    (modalist-fix x) is an fty alist fixing function that follows the drop-keys strategy.

    Signature
    (modalist-fix x) → fty::newx
    Arguments
    x — Guard (modalist-p x).
    Returns
    fty::newx — Type (modalist-p fty::newx).

    Note that in the execution this is just an inline identity function.

    Definitions and Theorems

    Function: modalist-fix$inline

    (defun modalist-fix$inline (x)
      (declare (xargs :guard (modalist-p x)))
      (let ((__function__ 'modalist-fix))
        (declare (ignorable __function__))
        (mbe :logic
             (if (atom x)
                 x
               (let ((rest (modalist-fix (cdr x))))
                 (if (and (consp (car x))
                          (modname-p (caar x)))
                     (let ((fty::first-key (caar x))
                           (fty::first-val (module-fix (cdar x))))
                       (cons (cons fty::first-key fty::first-val)
                             rest))
                   rest)))
             :exec x)))

    Theorem: modalist-p-of-modalist-fix

    (defthm modalist-p-of-modalist-fix
      (b* ((fty::newx (modalist-fix$inline x)))
        (modalist-p fty::newx))
      :rule-classes :rewrite)

    Theorem: modalist-fix-when-modalist-p

    (defthm modalist-fix-when-modalist-p
      (implies (modalist-p x)
               (equal (modalist-fix x) x)))

    Function: modalist-equiv$inline

    (defun modalist-equiv$inline (x y)
      (declare (xargs :guard (and (modalist-p x) (modalist-p y))))
      (equal (modalist-fix x)
             (modalist-fix y)))

    Theorem: modalist-equiv-is-an-equivalence

    (defthm modalist-equiv-is-an-equivalence
      (and (booleanp (modalist-equiv x y))
           (modalist-equiv x x)
           (implies (modalist-equiv x y)
                    (modalist-equiv y x))
           (implies (and (modalist-equiv x y)
                         (modalist-equiv y z))
                    (modalist-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: modalist-equiv-implies-equal-modalist-fix-1

    (defthm modalist-equiv-implies-equal-modalist-fix-1
      (implies (modalist-equiv x x-equiv)
               (equal (modalist-fix x)
                      (modalist-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: modalist-fix-under-modalist-equiv

    (defthm modalist-fix-under-modalist-equiv
      (modalist-equiv (modalist-fix x) x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-modalist-fix-1-forward-to-modalist-equiv

    (defthm equal-of-modalist-fix-1-forward-to-modalist-equiv
      (implies (equal (modalist-fix x) y)
               (modalist-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-modalist-fix-2-forward-to-modalist-equiv

    (defthm equal-of-modalist-fix-2-forward-to-modalist-equiv
      (implies (equal x (modalist-fix y))
               (modalist-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: modalist-equiv-of-modalist-fix-1-forward

    (defthm modalist-equiv-of-modalist-fix-1-forward
      (implies (modalist-equiv (modalist-fix x) y)
               (modalist-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: modalist-equiv-of-modalist-fix-2-forward

    (defthm modalist-equiv-of-modalist-fix-2-forward
      (implies (modalist-equiv x (modalist-fix y))
               (modalist-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: cons-of-module-fix-v-under-modalist-equiv

    (defthm cons-of-module-fix-v-under-modalist-equiv
      (modalist-equiv (cons (cons acl2::k (module-fix acl2::v))
                            x)
                      (cons (cons acl2::k acl2::v) x)))

    Theorem: cons-module-equiv-congruence-on-v-under-modalist-equiv

    (defthm cons-module-equiv-congruence-on-v-under-modalist-equiv
      (implies (module-equiv acl2::v v-equiv)
               (modalist-equiv (cons (cons acl2::k acl2::v) x)
                               (cons (cons acl2::k v-equiv) x)))
      :rule-classes :congruence)

    Theorem: cons-of-modalist-fix-y-under-modalist-equiv

    (defthm cons-of-modalist-fix-y-under-modalist-equiv
      (modalist-equiv (cons x (modalist-fix y))
                      (cons x y)))

    Theorem: cons-modalist-equiv-congruence-on-y-under-modalist-equiv

    (defthm cons-modalist-equiv-congruence-on-y-under-modalist-equiv
      (implies (modalist-equiv y y-equiv)
               (modalist-equiv (cons x y)
                               (cons x y-equiv)))
      :rule-classes :congruence)

    Theorem: modalist-fix-of-acons

    (defthm modalist-fix-of-acons
      (equal (modalist-fix (cons (cons acl2::a acl2::b) x))
             (let ((rest (modalist-fix x)))
               (if (and (modname-p acl2::a))
                   (let ((fty::first-key acl2::a)
                         (fty::first-val (module-fix acl2::b)))
                     (cons (cons fty::first-key fty::first-val)
                           rest))
                 rest))))

    Theorem: hons-assoc-equal-of-modalist-fix

    (defthm hons-assoc-equal-of-modalist-fix
      (equal (hons-assoc-equal acl2::k (modalist-fix x))
             (let ((fty::pair (hons-assoc-equal acl2::k x)))
               (and (modname-p acl2::k)
                    fty::pair
                    (cons acl2::k
                          (module-fix (cdr fty::pair)))))))

    Theorem: modalist-fix-of-append

    (defthm modalist-fix-of-append
      (equal (modalist-fix (append std::a std::b))
             (append (modalist-fix std::a)
                     (modalist-fix std::b))))

    Theorem: consp-car-of-modalist-fix

    (defthm consp-car-of-modalist-fix
      (equal (consp (car (modalist-fix x)))
             (consp (modalist-fix x))))