• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Community
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
        • Svex-stvs
        • Svex-decomposition-methodology
        • Sv-versus-esim
        • Svex-decomp
        • Svex-compose-dfs
        • Svex-compilation
        • Moddb
        • Svmods
        • Svstmt
        • Sv-tutorial
        • Expressions
          • Rewriting
          • Svex
            • Svar
              • Svar-p
              • Svar-fix
              • Make-svar
              • Svar-equiv
              • Svar->props
              • Svar->delay
              • Svar->bits
              • Change-svar
              • Svarlist
                • Svarlist-p
                • Svarlist-fix
                  • Svarlist-equiv
                • Svar->name
                • Svar-map
                • Svar-alist
              • Least-fixpoint
              • Svex-p
              • Svex-select
              • Svex-alist
              • Svex-equiv
              • Svexlist
              • Svex-call
              • Fnsym
              • Svex-quote
              • Svex-var
              • Svcall-rw
              • Svcall
              • Svex-kind
              • Svcall*
              • Svex-fix
              • Svex-count
              • Svex-1z
              • Svex-1x
              • Svex-z
              • Svex-x
            • Bit-blasting
            • Functions
            • 4vmask
            • Why-infinite-width
            • Svex-vars
            • Evaluation
            • Values
          • Symbolic-test-vector
          • Vl-to-svex
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Svarlist

    Svarlist-fix

    (svarlist-fix x) is a usual fty list fixing function.

    Signature
    (svarlist-fix x) → fty::newx
    Arguments
    x — Guard (svarlist-p x).
    Returns
    fty::newx — Type (svarlist-p fty::newx).

    In the logic, we apply svar-fix to each member of the x. In the execution, none of that is actually necessary and this is just an inlined identity function.

    Definitions and Theorems

    Function: svarlist-fix$inline

    (defun svarlist-fix$inline (x)
      (declare (xargs :guard (svarlist-p x)))
      (let ((__function__ 'svarlist-fix))
        (declare (ignorable __function__))
        (mbe :logic
             (if (atom x)
                 nil
               (cons (svar-fix (car x))
                     (svarlist-fix (cdr x))))
             :exec x)))

    Theorem: svarlist-p-of-svarlist-fix

    (defthm svarlist-p-of-svarlist-fix
      (b* ((fty::newx (svarlist-fix$inline x)))
        (svarlist-p fty::newx))
      :rule-classes :rewrite)

    Theorem: svarlist-fix-when-svarlist-p

    (defthm svarlist-fix-when-svarlist-p
      (implies (svarlist-p x)
               (equal (svarlist-fix x) x)))

    Function: svarlist-equiv$inline

    (defun svarlist-equiv$inline (x y)
      (declare (xargs :guard (and (svarlist-p x) (svarlist-p y))))
      (equal (svarlist-fix x)
             (svarlist-fix y)))

    Theorem: svarlist-equiv-is-an-equivalence

    (defthm svarlist-equiv-is-an-equivalence
      (and (booleanp (svarlist-equiv x y))
           (svarlist-equiv x x)
           (implies (svarlist-equiv x y)
                    (svarlist-equiv y x))
           (implies (and (svarlist-equiv x y)
                         (svarlist-equiv y z))
                    (svarlist-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: svarlist-equiv-implies-equal-svarlist-fix-1

    (defthm svarlist-equiv-implies-equal-svarlist-fix-1
      (implies (svarlist-equiv x x-equiv)
               (equal (svarlist-fix x)
                      (svarlist-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: svarlist-fix-under-svarlist-equiv

    (defthm svarlist-fix-under-svarlist-equiv
      (svarlist-equiv (svarlist-fix x) x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-svarlist-fix-1-forward-to-svarlist-equiv

    (defthm equal-of-svarlist-fix-1-forward-to-svarlist-equiv
      (implies (equal (svarlist-fix x) y)
               (svarlist-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-svarlist-fix-2-forward-to-svarlist-equiv

    (defthm equal-of-svarlist-fix-2-forward-to-svarlist-equiv
      (implies (equal x (svarlist-fix y))
               (svarlist-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: svarlist-equiv-of-svarlist-fix-1-forward

    (defthm svarlist-equiv-of-svarlist-fix-1-forward
      (implies (svarlist-equiv (svarlist-fix x) y)
               (svarlist-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: svarlist-equiv-of-svarlist-fix-2-forward

    (defthm svarlist-equiv-of-svarlist-fix-2-forward
      (implies (svarlist-equiv x (svarlist-fix y))
               (svarlist-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: car-of-svarlist-fix-x-under-svar-equiv

    (defthm car-of-svarlist-fix-x-under-svar-equiv
      (svar-equiv (car (svarlist-fix x))
                  (car x)))

    Theorem: car-svarlist-equiv-congruence-on-x-under-svar-equiv

    (defthm car-svarlist-equiv-congruence-on-x-under-svar-equiv
      (implies (svarlist-equiv x x-equiv)
               (svar-equiv (car x) (car x-equiv)))
      :rule-classes :congruence)

    Theorem: cdr-of-svarlist-fix-x-under-svarlist-equiv

    (defthm cdr-of-svarlist-fix-x-under-svarlist-equiv
      (svarlist-equiv (cdr (svarlist-fix x))
                      (cdr x)))

    Theorem: cdr-svarlist-equiv-congruence-on-x-under-svarlist-equiv

    (defthm cdr-svarlist-equiv-congruence-on-x-under-svarlist-equiv
      (implies (svarlist-equiv x x-equiv)
               (svarlist-equiv (cdr x) (cdr x-equiv)))
      :rule-classes :congruence)

    Theorem: cons-of-svar-fix-x-under-svarlist-equiv

    (defthm cons-of-svar-fix-x-under-svarlist-equiv
      (svarlist-equiv (cons (svar-fix x) y)
                      (cons x y)))

    Theorem: cons-svar-equiv-congruence-on-x-under-svarlist-equiv

    (defthm cons-svar-equiv-congruence-on-x-under-svarlist-equiv
      (implies (svar-equiv x x-equiv)
               (svarlist-equiv (cons x y)
                               (cons x-equiv y)))
      :rule-classes :congruence)

    Theorem: cons-of-svarlist-fix-y-under-svarlist-equiv

    (defthm cons-of-svarlist-fix-y-under-svarlist-equiv
      (svarlist-equiv (cons x (svarlist-fix y))
                      (cons x y)))

    Theorem: cons-svarlist-equiv-congruence-on-y-under-svarlist-equiv

    (defthm cons-svarlist-equiv-congruence-on-y-under-svarlist-equiv
      (implies (svarlist-equiv y y-equiv)
               (svarlist-equiv (cons x y)
                               (cons x y-equiv)))
      :rule-classes :congruence)

    Theorem: consp-of-svarlist-fix

    (defthm consp-of-svarlist-fix
      (equal (consp (svarlist-fix x))
             (consp x)))

    Theorem: svarlist-fix-under-iff

    (defthm svarlist-fix-under-iff
      (iff (svarlist-fix x) (consp x)))

    Theorem: svarlist-fix-of-cons

    (defthm svarlist-fix-of-cons
      (equal (svarlist-fix (cons a x))
             (cons (svar-fix a) (svarlist-fix x))))

    Theorem: len-of-svarlist-fix

    (defthm len-of-svarlist-fix
      (equal (len (svarlist-fix x)) (len x)))

    Theorem: svarlist-fix-of-append

    (defthm svarlist-fix-of-append
      (equal (svarlist-fix (append std::a std::b))
             (append (svarlist-fix std::a)
                     (svarlist-fix std::b))))

    Theorem: svarlist-fix-of-repeat

    (defthm svarlist-fix-of-repeat
      (equal (svarlist-fix (repeat acl2::n x))
             (repeat acl2::n (svar-fix x))))

    Theorem: list-equiv-refines-svarlist-equiv

    (defthm list-equiv-refines-svarlist-equiv
      (implies (list-equiv x y)
               (svarlist-equiv x y))
      :rule-classes :refinement)

    Theorem: nth-of-svarlist-fix

    (defthm nth-of-svarlist-fix
      (equal (nth acl2::n (svarlist-fix x))
             (if (< (nfix acl2::n) (len x))
                 (svar-fix (nth acl2::n x))
               nil)))

    Theorem: svarlist-equiv-implies-svarlist-equiv-append-1

    (defthm svarlist-equiv-implies-svarlist-equiv-append-1
      (implies (svarlist-equiv x fty::x-equiv)
               (svarlist-equiv (append x y)
                               (append fty::x-equiv y)))
      :rule-classes (:congruence))

    Theorem: svarlist-equiv-implies-svarlist-equiv-append-2

    (defthm svarlist-equiv-implies-svarlist-equiv-append-2
      (implies (svarlist-equiv y fty::y-equiv)
               (svarlist-equiv (append x y)
                               (append x fty::y-equiv)))
      :rule-classes (:congruence))

    Theorem: svarlist-equiv-implies-svarlist-equiv-nthcdr-2

    (defthm svarlist-equiv-implies-svarlist-equiv-nthcdr-2
      (implies (svarlist-equiv acl2::l l-equiv)
               (svarlist-equiv (nthcdr acl2::n acl2::l)
                               (nthcdr acl2::n l-equiv)))
      :rule-classes (:congruence))

    Theorem: svarlist-equiv-implies-svarlist-equiv-take-2

    (defthm svarlist-equiv-implies-svarlist-equiv-take-2
      (implies (svarlist-equiv acl2::l l-equiv)
               (svarlist-equiv (take acl2::n acl2::l)
                               (take acl2::n l-equiv)))
      :rule-classes (:congruence))