• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Community
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
        • Svex-stvs
        • Svex-decomposition-methodology
        • Sv-versus-esim
        • Svex-decomp
        • Svex-compose-dfs
        • Svex-compilation
        • Moddb
        • Svmods
        • Svstmt
        • Sv-tutorial
        • Expressions
          • Rewriting
          • Svex
          • Bit-blasting
            • Svex-focused-equivalence-checking
            • A4vec-operations
            • Svexlist-eval-gl
            • Aig-symbolic-arithmetic
            • Svex-varmasks/env->aig-env-rec
            • Svex-varmasks->a4env-rec
            • Svexlist/env-list-eval-gl
            • 4vmask-to-a4vec-rec-env
            • 4vmask-to-a4vec-rec
            • Svexlist->a4vecs-for-varlist
            • Svex-varmasks/env->aig-env-stats-rec
            • Svexlist->a4vec-nrev
            • A4veclist/svex-env-list-eval
            • A4vec
            • Svexlist-x-out-unused-vars
            • Svex->a4vec-memotable-correctp
            • A4vec/svex-env-eval
            • Svex-varmasks->a4env
            • Svex-varmasks/env->aig-env-rec-log
            • 4vmask-to-a4vec-env
            • 4veclist-from-bitlist-log-rec
            • Svex-apply-aig
            • Svexlist-vars-for-symbolic-eval
            • Nat-bool-a4env-upper-boundp
            • 4vmask-to-a4vec
            • Svexlist/env-list-vars-for-symbolic-eval
            • Svex-maskbits-for-vars
            • Svexlist->a4vec-aig-env-for-varlist
            • 4vec-from-bitlist
            • Svexlist-full-masks-p
            • Svex-varmasks/env->aig-env-stats
            • Svex-varmasks/env->aig-env
            • Svexlistlist->a4vec
            • Svex-const-concat-args
            • Svex-mask-alist-extract-vars
            • Svexlist->a4vec-top
            • Nat-bool-a4vec-upper-boundp
            • Nat-bool-a4env-lower-boundp
            • Maybe-a3vec-fix
            • Svex-maskbits-ok
            • Svex-envlist-check-boolmasks
            • Svex-env-check-boolmasks
            • Nat-bool-list-upper-boundp
            • Nat-bool-a4vec-lower-boundp
            • Maybe-svexlist-rewrite-fixpoint
            • 4vmask-to-a4vec-varcount
            • A4vec-eval
            • Svexlist-nth
            • A4veclist-nth
            • Nat-bool-list-lower-boundp
            • 4veclist-from-bitlist
            • V2i-first-n
            • A4veclist-eval-gl
            • Svex-envlist-keyset
            • Svex-a4vec-env-eval
            • A4veclist/env-list-eval
            • Svexlist-variable-mask-alist
            • Sparseint-nfix
            • A4veclist-length
            • A4veclist-eval
            • 4vec-boolmaskp
            • Nat-bool-list-nats
            • Nat-bool-a4env-p
            • Nat-bool-listp
            • A4veclist->aiglist
            • Svexlist-rewrite-fixpoint-memo
            • Nat-bool-a4vec-p
            • A4vec->aiglist
            • Svex-is-const-concat
            • Nat-bool-a4env-vars
            • Svexlist-mask-alist-memo
            • Nat-bool-a4vec-vars
            • Svexlist-vars-memo
            • A4vec-constantp
            • Svex-aig-memotable
            • Svex-a4vec-env
              • Svex-a4vec-env-p
                • Svex-a4vec-env-fix
                • Svex-a4vec-env-equiv
              • A4veclistlist
              • A4veclist
              • Symbolic-params-x-out-cond
            • Functions
            • 4vmask
            • Why-infinite-width
            • Svex-vars
            • Evaluation
            • Values
          • Symbolic-test-vector
          • Vl-to-svex
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Svex-a4vec-env

    Svex-a4vec-env-p

    Recognizer for svex-a4vec-env.

    Signature
    (svex-a4vec-env-p x) → *

    Definitions and Theorems

    Function: svex-a4vec-env-p

    (defun svex-a4vec-env-p (x)
      (declare (xargs :guard t))
      (let ((__function__ 'svex-a4vec-env-p))
        (declare (ignorable __function__))
        (if (atom x)
            t
          (and (consp (car x))
               (svar-p (caar x))
               (a4vec-p (cdar x))
               (svex-a4vec-env-p (cdr x))))))

    Theorem: svex-a4vec-env-p-of-revappend

    (defthm svex-a4vec-env-p-of-revappend
      (equal (svex-a4vec-env-p (revappend x y))
             (and (svex-a4vec-env-p (list-fix x))
                  (svex-a4vec-env-p y)))
      :rule-classes ((:rewrite)))

    Theorem: svex-a4vec-env-p-of-remove

    (defthm svex-a4vec-env-p-of-remove
      (implies (svex-a4vec-env-p x)
               (svex-a4vec-env-p (remove acl2::a x)))
      :rule-classes ((:rewrite)))

    Theorem: svex-a4vec-env-p-of-last

    (defthm svex-a4vec-env-p-of-last
      (implies (svex-a4vec-env-p (double-rewrite x))
               (svex-a4vec-env-p (last x)))
      :rule-classes ((:rewrite)))

    Theorem: svex-a4vec-env-p-of-nthcdr

    (defthm svex-a4vec-env-p-of-nthcdr
      (implies (svex-a4vec-env-p (double-rewrite x))
               (svex-a4vec-env-p (nthcdr acl2::n x)))
      :rule-classes ((:rewrite)))

    Theorem: svex-a4vec-env-p-of-butlast

    (defthm svex-a4vec-env-p-of-butlast
      (implies (svex-a4vec-env-p (double-rewrite x))
               (svex-a4vec-env-p (butlast x acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: svex-a4vec-env-p-of-update-nth

    (defthm svex-a4vec-env-p-of-update-nth
      (implies (svex-a4vec-env-p (double-rewrite x))
               (iff (svex-a4vec-env-p (update-nth acl2::n y x))
                    (and (and (consp y)
                              (svar-p (car y))
                              (a4vec-p (cdr y)))
                         (or (<= (nfix acl2::n) (len x))
                             (and (consp nil)
                                  (svar-p (car nil))
                                  (a4vec-p (cdr nil)))))))
      :rule-classes ((:rewrite)))

    Theorem: svex-a4vec-env-p-of-repeat

    (defthm svex-a4vec-env-p-of-repeat
      (iff (svex-a4vec-env-p (repeat acl2::n x))
           (or (and (consp x)
                    (svar-p (car x))
                    (a4vec-p (cdr x)))
               (zp acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: svex-a4vec-env-p-of-take

    (defthm svex-a4vec-env-p-of-take
      (implies (svex-a4vec-env-p (double-rewrite x))
               (iff (svex-a4vec-env-p (take acl2::n x))
                    (or (and (consp nil)
                             (svar-p (car nil))
                             (a4vec-p (cdr nil)))
                        (<= (nfix acl2::n) (len x)))))
      :rule-classes ((:rewrite)))

    Theorem: svex-a4vec-env-p-of-union-equal

    (defthm svex-a4vec-env-p-of-union-equal
      (equal (svex-a4vec-env-p (union-equal x y))
             (and (svex-a4vec-env-p (list-fix x))
                  (svex-a4vec-env-p (double-rewrite y))))
      :rule-classes ((:rewrite)))

    Theorem: svex-a4vec-env-p-of-intersection-equal-2

    (defthm svex-a4vec-env-p-of-intersection-equal-2
      (implies (svex-a4vec-env-p (double-rewrite y))
               (svex-a4vec-env-p (intersection-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: svex-a4vec-env-p-of-intersection-equal-1

    (defthm svex-a4vec-env-p-of-intersection-equal-1
      (implies (svex-a4vec-env-p (double-rewrite x))
               (svex-a4vec-env-p (intersection-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: svex-a4vec-env-p-of-set-difference-equal

    (defthm svex-a4vec-env-p-of-set-difference-equal
      (implies (svex-a4vec-env-p x)
               (svex-a4vec-env-p (set-difference-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: svex-a4vec-env-p-set-equiv-congruence

    (defthm svex-a4vec-env-p-set-equiv-congruence
      (implies (set-equiv x y)
               (equal (svex-a4vec-env-p x)
                      (svex-a4vec-env-p y)))
      :rule-classes :congruence)

    Theorem: svex-a4vec-env-p-when-subsetp-equal

    (defthm svex-a4vec-env-p-when-subsetp-equal
      (and (implies (and (subsetp-equal x y)
                         (svex-a4vec-env-p y))
                    (svex-a4vec-env-p x))
           (implies (and (svex-a4vec-env-p y)
                         (subsetp-equal x y))
                    (svex-a4vec-env-p x)))
      :rule-classes ((:rewrite)))

    Theorem: svex-a4vec-env-p-of-rcons

    (defthm svex-a4vec-env-p-of-rcons
      (iff (svex-a4vec-env-p (acl2::rcons acl2::a x))
           (and (and (consp acl2::a)
                     (svar-p (car acl2::a))
                     (a4vec-p (cdr acl2::a)))
                (svex-a4vec-env-p (list-fix x))))
      :rule-classes ((:rewrite)))

    Theorem: svex-a4vec-env-p-of-rev

    (defthm svex-a4vec-env-p-of-rev
      (equal (svex-a4vec-env-p (rev x))
             (svex-a4vec-env-p (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: svex-a4vec-env-p-of-duplicated-members

    (defthm svex-a4vec-env-p-of-duplicated-members
      (implies (svex-a4vec-env-p x)
               (svex-a4vec-env-p (duplicated-members x)))
      :rule-classes ((:rewrite)))

    Theorem: svex-a4vec-env-p-of-difference

    (defthm svex-a4vec-env-p-of-difference
      (implies (svex-a4vec-env-p x)
               (svex-a4vec-env-p (difference x y)))
      :rule-classes ((:rewrite)))

    Theorem: svex-a4vec-env-p-of-intersect-2

    (defthm svex-a4vec-env-p-of-intersect-2
      (implies (svex-a4vec-env-p y)
               (svex-a4vec-env-p (intersect x y)))
      :rule-classes ((:rewrite)))

    Theorem: svex-a4vec-env-p-of-intersect-1

    (defthm svex-a4vec-env-p-of-intersect-1
      (implies (svex-a4vec-env-p x)
               (svex-a4vec-env-p (intersect x y)))
      :rule-classes ((:rewrite)))

    Theorem: svex-a4vec-env-p-of-union

    (defthm svex-a4vec-env-p-of-union
      (iff (svex-a4vec-env-p (union x y))
           (and (svex-a4vec-env-p (sfix x))
                (svex-a4vec-env-p (sfix y))))
      :rule-classes ((:rewrite)))

    Theorem: svex-a4vec-env-p-of-mergesort

    (defthm svex-a4vec-env-p-of-mergesort
      (iff (svex-a4vec-env-p (mergesort x))
           (svex-a4vec-env-p (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: svex-a4vec-env-p-of-delete

    (defthm svex-a4vec-env-p-of-delete
      (implies (svex-a4vec-env-p x)
               (svex-a4vec-env-p (delete acl2::k x)))
      :rule-classes ((:rewrite)))

    Theorem: svex-a4vec-env-p-of-insert

    (defthm svex-a4vec-env-p-of-insert
      (iff (svex-a4vec-env-p (insert acl2::a x))
           (and (svex-a4vec-env-p (sfix x))
                (and (consp acl2::a)
                     (svar-p (car acl2::a))
                     (a4vec-p (cdr acl2::a)))))
      :rule-classes ((:rewrite)))

    Theorem: svex-a4vec-env-p-of-sfix

    (defthm svex-a4vec-env-p-of-sfix
      (iff (svex-a4vec-env-p (sfix x))
           (or (svex-a4vec-env-p x)
               (not (setp x))))
      :rule-classes ((:rewrite)))

    Theorem: svex-a4vec-env-p-of-list-fix

    (defthm svex-a4vec-env-p-of-list-fix
      (equal (svex-a4vec-env-p (list-fix x))
             (svex-a4vec-env-p x))
      :rule-classes ((:rewrite)))

    Theorem: svex-a4vec-env-p-of-append

    (defthm svex-a4vec-env-p-of-append
      (equal (svex-a4vec-env-p (append acl2::a acl2::b))
             (and (svex-a4vec-env-p acl2::a)
                  (svex-a4vec-env-p acl2::b)))
      :rule-classes ((:rewrite)))

    Theorem: svex-a4vec-env-p-when-not-consp

    (defthm svex-a4vec-env-p-when-not-consp
      (implies (not (consp x))
               (svex-a4vec-env-p x))
      :rule-classes ((:rewrite)))

    Theorem: svex-a4vec-env-p-of-cdr-when-svex-a4vec-env-p

    (defthm svex-a4vec-env-p-of-cdr-when-svex-a4vec-env-p
      (implies (svex-a4vec-env-p (double-rewrite x))
               (svex-a4vec-env-p (cdr x)))
      :rule-classes ((:rewrite)))

    Theorem: svex-a4vec-env-p-of-cons

    (defthm svex-a4vec-env-p-of-cons
      (equal (svex-a4vec-env-p (cons acl2::a x))
             (and (and (consp acl2::a)
                       (svar-p (car acl2::a))
                       (a4vec-p (cdr acl2::a)))
                  (svex-a4vec-env-p x)))
      :rule-classes ((:rewrite)))

    Theorem: svex-a4vec-env-p-of-fast-alist-clean

    (defthm svex-a4vec-env-p-of-fast-alist-clean
      (implies (svex-a4vec-env-p x)
               (svex-a4vec-env-p (fast-alist-clean x)))
      :rule-classes ((:rewrite)))

    Theorem: svex-a4vec-env-p-of-hons-shrink-alist

    (defthm svex-a4vec-env-p-of-hons-shrink-alist
      (implies (and (svex-a4vec-env-p x)
                    (svex-a4vec-env-p y))
               (svex-a4vec-env-p (hons-shrink-alist x y)))
      :rule-classes ((:rewrite)))

    Theorem: svex-a4vec-env-p-of-hons-acons

    (defthm svex-a4vec-env-p-of-hons-acons
      (equal (svex-a4vec-env-p (hons-acons acl2::a acl2::n x))
             (and (svar-p acl2::a)
                  (a4vec-p acl2::n)
                  (svex-a4vec-env-p x)))
      :rule-classes ((:rewrite)))

    Theorem: a4vec-p-of-cdr-of-hons-assoc-equal-when-svex-a4vec-env-p

    (defthm a4vec-p-of-cdr-of-hons-assoc-equal-when-svex-a4vec-env-p
      (implies (svex-a4vec-env-p x)
               (iff (a4vec-p (cdr (hons-assoc-equal acl2::k x)))
                    (or (hons-assoc-equal acl2::k x)
                        (a4vec-p nil))))
      :rule-classes ((:rewrite)))

    Theorem: a4vec-p-of-cdar-when-svex-a4vec-env-p

    (defthm a4vec-p-of-cdar-when-svex-a4vec-env-p
      (implies (svex-a4vec-env-p x)
               (iff (a4vec-p (cdar x))
                    (or (consp x) (a4vec-p nil))))
      :rule-classes ((:rewrite)))

    Theorem: svar-p-of-caar-when-svex-a4vec-env-p

    (defthm svar-p-of-caar-when-svex-a4vec-env-p
      (implies (svex-a4vec-env-p x)
               (iff (svar-p (caar x))
                    (or (consp x) (svar-p nil))))
      :rule-classes ((:rewrite)))