• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
        • Svex-stvs
          • Svtv-data
          • Defsvtv$
          • Svtv-run
          • Defsvtv-phasewise
          • Svtv
          • Svtv-spec
          • Defsvtv
          • Process.lisp
          • Svtv-doc
          • Svtv-chase$
          • Svtv-versus-stv
          • Svtv-debug-fsm
          • Structure.lisp
          • Svtv-debug
            • Vcd.lisp
              • Elab-mod->vcd-wires
              • Vcd-scope
              • Vcd-wire
              • Vcd-print-4vec-aux
              • Vcd-dump-delta
              • Vcd-wirelist-add-to-wiremap
              • Vcd-print-header
              • Vcd-dump-first-snapshot-aux
              • Vcd-dump-delta-aux
              • Vcd-wiremap
              • 4vecarr
              • Vcd-print-wiredecls
              • Vcd-4vec-bitstr
              • Vcd-index->codechars
              • Vcd-wire->width
              • Vcd-index->codestr
              • Vcd-dump-first-snapshot
              • Vcd-wirelist
                • Vcd-wirelist-fix
                  • Vcd-wirelist-equiv
                  • Vcd-wirelist-p
              • Debug.lisp
            • Def-pipeline-thm
            • Expand.lisp
            • Def-cycle-thm
            • Svtv-utilities
            • Svtv-debug$
            • Defsvtv$-phasewise
          • Svex-decomposition-methodology
          • Sv-versus-esim
          • Svex-decomp
          • Svex-compose-dfs
          • Svex-compilation
          • Moddb
          • Svmods
          • Svstmt
          • Sv-tutorial
          • Expressions
          • Symbolic-test-vector
          • Vl-to-svex
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Vcd-wirelist

    Vcd-wirelist-fix

    (vcd-wirelist-fix x) is a usual fty list fixing function.

    Signature
    (vcd-wirelist-fix x) → fty::newx
    Arguments
    x — Guard (vcd-wirelist-p x).
    Returns
    fty::newx — Type (vcd-wirelist-p fty::newx).

    In the logic, we apply vcd-wire-fix to each member of the x. In the execution, none of that is actually necessary and this is just an inlined identity function.

    Definitions and Theorems

    Function: vcd-wirelist-fix$inline

    (defun vcd-wirelist-fix$inline (x)
      (declare (xargs :guard (vcd-wirelist-p x)))
      (let ((__function__ 'vcd-wirelist-fix))
        (declare (ignorable __function__))
        (mbe :logic
             (if (atom x)
                 nil
               (cons (vcd-wire-fix (car x))
                     (vcd-wirelist-fix (cdr x))))
             :exec x)))

    Theorem: vcd-wirelist-p-of-vcd-wirelist-fix

    (defthm vcd-wirelist-p-of-vcd-wirelist-fix
      (b* ((fty::newx (vcd-wirelist-fix$inline x)))
        (vcd-wirelist-p fty::newx))
      :rule-classes :rewrite)

    Theorem: vcd-wirelist-fix-when-vcd-wirelist-p

    (defthm vcd-wirelist-fix-when-vcd-wirelist-p
      (implies (vcd-wirelist-p x)
               (equal (vcd-wirelist-fix x) x)))

    Function: vcd-wirelist-equiv$inline

    (defun vcd-wirelist-equiv$inline (x y)
      (declare (xargs :guard (and (vcd-wirelist-p x)
                                  (vcd-wirelist-p y))))
      (equal (vcd-wirelist-fix x)
             (vcd-wirelist-fix y)))

    Theorem: vcd-wirelist-equiv-is-an-equivalence

    (defthm vcd-wirelist-equiv-is-an-equivalence
      (and (booleanp (vcd-wirelist-equiv x y))
           (vcd-wirelist-equiv x x)
           (implies (vcd-wirelist-equiv x y)
                    (vcd-wirelist-equiv y x))
           (implies (and (vcd-wirelist-equiv x y)
                         (vcd-wirelist-equiv y z))
                    (vcd-wirelist-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: vcd-wirelist-equiv-implies-equal-vcd-wirelist-fix-1

    (defthm vcd-wirelist-equiv-implies-equal-vcd-wirelist-fix-1
      (implies (vcd-wirelist-equiv x x-equiv)
               (equal (vcd-wirelist-fix x)
                      (vcd-wirelist-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: vcd-wirelist-fix-under-vcd-wirelist-equiv

    (defthm vcd-wirelist-fix-under-vcd-wirelist-equiv
      (vcd-wirelist-equiv (vcd-wirelist-fix x)
                          x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-vcd-wirelist-fix-1-forward-to-vcd-wirelist-equiv

    (defthm equal-of-vcd-wirelist-fix-1-forward-to-vcd-wirelist-equiv
      (implies (equal (vcd-wirelist-fix x) y)
               (vcd-wirelist-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-vcd-wirelist-fix-2-forward-to-vcd-wirelist-equiv

    (defthm equal-of-vcd-wirelist-fix-2-forward-to-vcd-wirelist-equiv
      (implies (equal x (vcd-wirelist-fix y))
               (vcd-wirelist-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: vcd-wirelist-equiv-of-vcd-wirelist-fix-1-forward

    (defthm vcd-wirelist-equiv-of-vcd-wirelist-fix-1-forward
      (implies (vcd-wirelist-equiv (vcd-wirelist-fix x)
                                   y)
               (vcd-wirelist-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: vcd-wirelist-equiv-of-vcd-wirelist-fix-2-forward

    (defthm vcd-wirelist-equiv-of-vcd-wirelist-fix-2-forward
      (implies (vcd-wirelist-equiv x (vcd-wirelist-fix y))
               (vcd-wirelist-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: car-of-vcd-wirelist-fix-x-under-vcd-wire-equiv

    (defthm car-of-vcd-wirelist-fix-x-under-vcd-wire-equiv
      (vcd-wire-equiv (car (vcd-wirelist-fix x))
                      (car x)))

    Theorem: car-vcd-wirelist-equiv-congruence-on-x-under-vcd-wire-equiv

    (defthm car-vcd-wirelist-equiv-congruence-on-x-under-vcd-wire-equiv
      (implies (vcd-wirelist-equiv x x-equiv)
               (vcd-wire-equiv (car x) (car x-equiv)))
      :rule-classes :congruence)

    Theorem: cdr-of-vcd-wirelist-fix-x-under-vcd-wirelist-equiv

    (defthm cdr-of-vcd-wirelist-fix-x-under-vcd-wirelist-equiv
      (vcd-wirelist-equiv (cdr (vcd-wirelist-fix x))
                          (cdr x)))

    Theorem: cdr-vcd-wirelist-equiv-congruence-on-x-under-vcd-wirelist-equiv

    (defthm
        cdr-vcd-wirelist-equiv-congruence-on-x-under-vcd-wirelist-equiv
      (implies (vcd-wirelist-equiv x x-equiv)
               (vcd-wirelist-equiv (cdr x)
                                   (cdr x-equiv)))
      :rule-classes :congruence)

    Theorem: cons-of-vcd-wire-fix-x-under-vcd-wirelist-equiv

    (defthm cons-of-vcd-wire-fix-x-under-vcd-wirelist-equiv
      (vcd-wirelist-equiv (cons (vcd-wire-fix x) y)
                          (cons x y)))

    Theorem: cons-vcd-wire-equiv-congruence-on-x-under-vcd-wirelist-equiv

    (defthm cons-vcd-wire-equiv-congruence-on-x-under-vcd-wirelist-equiv
      (implies (vcd-wire-equiv x x-equiv)
               (vcd-wirelist-equiv (cons x y)
                                   (cons x-equiv y)))
      :rule-classes :congruence)

    Theorem: cons-of-vcd-wirelist-fix-y-under-vcd-wirelist-equiv

    (defthm cons-of-vcd-wirelist-fix-y-under-vcd-wirelist-equiv
      (vcd-wirelist-equiv (cons x (vcd-wirelist-fix y))
                          (cons x y)))

    Theorem: cons-vcd-wirelist-equiv-congruence-on-y-under-vcd-wirelist-equiv

    (defthm
       cons-vcd-wirelist-equiv-congruence-on-y-under-vcd-wirelist-equiv
      (implies (vcd-wirelist-equiv y y-equiv)
               (vcd-wirelist-equiv (cons x y)
                                   (cons x y-equiv)))
      :rule-classes :congruence)

    Theorem: consp-of-vcd-wirelist-fix

    (defthm consp-of-vcd-wirelist-fix
      (equal (consp (vcd-wirelist-fix x))
             (consp x)))

    Theorem: vcd-wirelist-fix-under-iff

    (defthm vcd-wirelist-fix-under-iff
      (iff (vcd-wirelist-fix x) (consp x)))

    Theorem: vcd-wirelist-fix-of-cons

    (defthm vcd-wirelist-fix-of-cons
      (equal (vcd-wirelist-fix (cons a x))
             (cons (vcd-wire-fix a)
                   (vcd-wirelist-fix x))))

    Theorem: len-of-vcd-wirelist-fix

    (defthm len-of-vcd-wirelist-fix
      (equal (len (vcd-wirelist-fix x))
             (len x)))

    Theorem: vcd-wirelist-fix-of-append

    (defthm vcd-wirelist-fix-of-append
      (equal (vcd-wirelist-fix (append std::a std::b))
             (append (vcd-wirelist-fix std::a)
                     (vcd-wirelist-fix std::b))))

    Theorem: vcd-wirelist-fix-of-repeat

    (defthm vcd-wirelist-fix-of-repeat
      (equal (vcd-wirelist-fix (repeat acl2::n x))
             (repeat acl2::n (vcd-wire-fix x))))

    Theorem: list-equiv-refines-vcd-wirelist-equiv

    (defthm list-equiv-refines-vcd-wirelist-equiv
      (implies (list-equiv x y)
               (vcd-wirelist-equiv x y))
      :rule-classes :refinement)

    Theorem: nth-of-vcd-wirelist-fix

    (defthm nth-of-vcd-wirelist-fix
      (equal (nth acl2::n (vcd-wirelist-fix x))
             (if (< (nfix acl2::n) (len x))
                 (vcd-wire-fix (nth acl2::n x))
               nil)))

    Theorem: vcd-wirelist-equiv-implies-vcd-wirelist-equiv-append-1

    (defthm vcd-wirelist-equiv-implies-vcd-wirelist-equiv-append-1
      (implies (vcd-wirelist-equiv x fty::x-equiv)
               (vcd-wirelist-equiv (append x y)
                                   (append fty::x-equiv y)))
      :rule-classes (:congruence))

    Theorem: vcd-wirelist-equiv-implies-vcd-wirelist-equiv-append-2

    (defthm vcd-wirelist-equiv-implies-vcd-wirelist-equiv-append-2
      (implies (vcd-wirelist-equiv y fty::y-equiv)
               (vcd-wirelist-equiv (append x y)
                                   (append x fty::y-equiv)))
      :rule-classes (:congruence))

    Theorem: vcd-wirelist-equiv-implies-vcd-wirelist-equiv-nthcdr-2

    (defthm vcd-wirelist-equiv-implies-vcd-wirelist-equiv-nthcdr-2
      (implies (vcd-wirelist-equiv acl2::l l-equiv)
               (vcd-wirelist-equiv (nthcdr acl2::n acl2::l)
                                   (nthcdr acl2::n l-equiv)))
      :rule-classes (:congruence))

    Theorem: vcd-wirelist-equiv-implies-vcd-wirelist-equiv-take-2

    (defthm vcd-wirelist-equiv-implies-vcd-wirelist-equiv-take-2
      (implies (vcd-wirelist-equiv acl2::l l-equiv)
               (vcd-wirelist-equiv (take acl2::n acl2::l)
                                   (take acl2::n l-equiv)))
      :rule-classes (:congruence))