• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
        • Warnings
        • Primitives
        • Use-set
        • Syntax
        • Getting-started
        • Utilities
        • Loader
        • Transforms
        • Lint
          • Vl-lintconfig-p
          • Lucid
          • Skip-detection
          • Vl-lintresult-p
          • Lint-warning-suppression
          • Condcheck
          • Selfassigns
          • Leftright-check
          • Dupeinst-check
          • Oddexpr-check
          • Remove-toohard
          • Qmarksize-check
          • Portcheck
          • Duplicate-detect
          • Vl-print-certain-warnings
          • Duperhs-check
            • Vl-duperhs-alistp
              • Vl-modulelist-duperhs-check
              • Vl-duperhs-too-trivial-p
              • Vl-maybe-warn-duperhs
              • Vl-warnings-for-duperhs-alist
              • Vl-module-duperhs-check
              • Vl-make-duperhs-alist-aux
              • Vl-make-duperhs-alist
              • Vl-design-duperhs-check
            • *vl-lint-help*
            • Lint-stmt-rewrite
            • Drop-missing-submodules
            • Check-case
            • Drop-user-submodules
            • Check-namespace
            • Vl-lint
          • Mlib
          • Server
          • Kit
          • Printer
          • Esim-vl
          • Well-formedness
        • Sv
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Duperhs-check

    Vl-duperhs-alistp

    (vl-duperhs-alistp x) recognizes association lists where every key satisfies vl-expr-p and each value satisfies vl-assignlist-p.

    This is an ordinary defalist.

    Function: vl-duperhs-alistp

    (defun vl-duperhs-alistp (x)
      (declare (xargs :guard t))
      (if (consp x)
          (and (consp (car x))
               (vl-expr-p (caar x))
               (vl-assignlist-p (cdar x))
               (vl-duperhs-alistp (cdr x)))
        t))

    Definitions and Theorems

    Function: vl-duperhs-alistp

    (defun vl-duperhs-alistp (x)
      (declare (xargs :guard t))
      (if (consp x)
          (and (consp (car x))
               (vl-expr-p (caar x))
               (vl-assignlist-p (cdar x))
               (vl-duperhs-alistp (cdr x)))
        t))

    Theorem: vl-duperhs-alistp-of-revappend

    (defthm vl-duperhs-alistp-of-revappend
      (equal (vl-duperhs-alistp (revappend acl2::x acl2::y))
             (and (vl-duperhs-alistp (list-fix acl2::x))
                  (vl-duperhs-alistp acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alistp-of-remove

    (defthm vl-duperhs-alistp-of-remove
      (implies (vl-duperhs-alistp acl2::x)
               (vl-duperhs-alistp (remove acl2::a acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alistp-of-last

    (defthm vl-duperhs-alistp-of-last
      (implies (vl-duperhs-alistp (double-rewrite acl2::x))
               (vl-duperhs-alistp (last acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alistp-of-nthcdr

    (defthm vl-duperhs-alistp-of-nthcdr
      (implies (vl-duperhs-alistp (double-rewrite acl2::x))
               (vl-duperhs-alistp (nthcdr acl2::n acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alistp-of-butlast

    (defthm vl-duperhs-alistp-of-butlast
      (implies (vl-duperhs-alistp (double-rewrite acl2::x))
               (vl-duperhs-alistp (butlast acl2::x acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alistp-of-update-nth

    (defthm vl-duperhs-alistp-of-update-nth
      (implies
           (vl-duperhs-alistp (double-rewrite acl2::x))
           (iff (vl-duperhs-alistp (update-nth acl2::n acl2::y acl2::x))
                (and (and (consp acl2::y)
                          (vl-expr-p (car acl2::y))
                          (vl-assignlist-p (cdr acl2::y)))
                     (or (<= (nfix acl2::n) (len acl2::x))
                         (and (consp nil)
                              (vl-expr-p (car nil))
                              (vl-assignlist-p (cdr nil)))))))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alistp-of-repeat

    (defthm vl-duperhs-alistp-of-repeat
      (iff (vl-duperhs-alistp (repeat acl2::n acl2::x))
           (or (and (consp acl2::x)
                    (vl-expr-p (car acl2::x))
                    (vl-assignlist-p (cdr acl2::x)))
               (zp acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alistp-of-take

    (defthm vl-duperhs-alistp-of-take
      (implies (vl-duperhs-alistp (double-rewrite acl2::x))
               (iff (vl-duperhs-alistp (take acl2::n acl2::x))
                    (or (and (consp nil)
                             (vl-expr-p (car nil))
                             (vl-assignlist-p (cdr nil)))
                        (<= (nfix acl2::n) (len acl2::x)))))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alistp-of-union-equal

    (defthm vl-duperhs-alistp-of-union-equal
      (equal (vl-duperhs-alistp (union-equal acl2::x acl2::y))
             (and (vl-duperhs-alistp (list-fix acl2::x))
                  (vl-duperhs-alistp (double-rewrite acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alistp-of-intersection-equal-2

    (defthm vl-duperhs-alistp-of-intersection-equal-2
      (implies (vl-duperhs-alistp (double-rewrite acl2::y))
               (vl-duperhs-alistp (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alistp-of-intersection-equal-1

    (defthm vl-duperhs-alistp-of-intersection-equal-1
      (implies (vl-duperhs-alistp (double-rewrite acl2::x))
               (vl-duperhs-alistp (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alistp-of-set-difference-equal

    (defthm vl-duperhs-alistp-of-set-difference-equal
      (implies
           (vl-duperhs-alistp acl2::x)
           (vl-duperhs-alistp (set-difference-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alistp-set-equiv-congruence

    (defthm vl-duperhs-alistp-set-equiv-congruence
      (implies (set-equiv acl2::x acl2::y)
               (equal (vl-duperhs-alistp acl2::x)
                      (vl-duperhs-alistp acl2::y)))
      :rule-classes :congruence)

    Theorem: vl-duperhs-alistp-when-subsetp-equal

    (defthm vl-duperhs-alistp-when-subsetp-equal
      (and (implies (and (subsetp-equal acl2::x acl2::y)
                         (vl-duperhs-alistp acl2::y))
                    (vl-duperhs-alistp acl2::x))
           (implies (and (vl-duperhs-alistp acl2::y)
                         (subsetp-equal acl2::x acl2::y))
                    (vl-duperhs-alistp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alistp-of-rcons

    (defthm vl-duperhs-alistp-of-rcons
      (iff (vl-duperhs-alistp (acl2::rcons acl2::a acl2::x))
           (and (and (consp acl2::a)
                     (vl-expr-p (car acl2::a))
                     (vl-assignlist-p (cdr acl2::a)))
                (vl-duperhs-alistp (list-fix acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alistp-of-rev

    (defthm vl-duperhs-alistp-of-rev
      (equal (vl-duperhs-alistp (rev acl2::x))
             (vl-duperhs-alistp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alistp-of-duplicated-members

    (defthm vl-duperhs-alistp-of-duplicated-members
      (implies (vl-duperhs-alistp acl2::x)
               (vl-duperhs-alistp (duplicated-members acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alistp-of-difference

    (defthm vl-duperhs-alistp-of-difference
      (implies (vl-duperhs-alistp acl2::x)
               (vl-duperhs-alistp (difference acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alistp-of-intersect-2

    (defthm vl-duperhs-alistp-of-intersect-2
      (implies (vl-duperhs-alistp acl2::y)
               (vl-duperhs-alistp (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alistp-of-intersect-1

    (defthm vl-duperhs-alistp-of-intersect-1
      (implies (vl-duperhs-alistp acl2::x)
               (vl-duperhs-alistp (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alistp-of-union

    (defthm vl-duperhs-alistp-of-union
      (iff (vl-duperhs-alistp (union acl2::x acl2::y))
           (and (vl-duperhs-alistp (sfix acl2::x))
                (vl-duperhs-alistp (sfix acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alistp-of-mergesort

    (defthm vl-duperhs-alistp-of-mergesort
      (iff (vl-duperhs-alistp (mergesort acl2::x))
           (vl-duperhs-alistp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alistp-of-delete

    (defthm vl-duperhs-alistp-of-delete
      (implies (vl-duperhs-alistp acl2::x)
               (vl-duperhs-alistp (delete acl2::k acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alistp-of-insert

    (defthm vl-duperhs-alistp-of-insert
      (iff (vl-duperhs-alistp (insert acl2::a acl2::x))
           (and (vl-duperhs-alistp (sfix acl2::x))
                (and (consp acl2::a)
                     (vl-expr-p (car acl2::a))
                     (vl-assignlist-p (cdr acl2::a)))))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alistp-of-sfix

    (defthm vl-duperhs-alistp-of-sfix
      (iff (vl-duperhs-alistp (sfix acl2::x))
           (or (vl-duperhs-alistp acl2::x)
               (not (setp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alistp-of-list-fix

    (defthm vl-duperhs-alistp-of-list-fix
      (equal (vl-duperhs-alistp (list-fix acl2::x))
             (vl-duperhs-alistp acl2::x))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alistp-of-append

    (defthm vl-duperhs-alistp-of-append
      (equal (vl-duperhs-alistp (append acl2::a acl2::b))
             (and (vl-duperhs-alistp acl2::a)
                  (vl-duperhs-alistp acl2::b)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alistp-when-not-consp

    (defthm vl-duperhs-alistp-when-not-consp
      (implies (not (consp acl2::x))
               (vl-duperhs-alistp acl2::x))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alistp-of-cdr-when-vl-duperhs-alistp

    (defthm vl-duperhs-alistp-of-cdr-when-vl-duperhs-alistp
      (implies (vl-duperhs-alistp (double-rewrite acl2::x))
               (vl-duperhs-alistp (cdr acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alistp-of-cons

    (defthm vl-duperhs-alistp-of-cons
      (equal (vl-duperhs-alistp (cons acl2::a acl2::x))
             (and (and (consp acl2::a)
                       (vl-expr-p (car acl2::a))
                       (vl-assignlist-p (cdr acl2::a)))
                  (vl-duperhs-alistp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alistp-of-make-fal

    (defthm vl-duperhs-alistp-of-make-fal
      (implies (and (vl-duperhs-alistp acl2::x)
                    (vl-duperhs-alistp acl2::y))
               (vl-duperhs-alistp (make-fal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-assignlist-p-of-cdr-when-member-equal-of-vl-duperhs-alistp

    (defthm
          vl-assignlist-p-of-cdr-when-member-equal-of-vl-duperhs-alistp
      (and (implies (and (vl-duperhs-alistp acl2::x)
                         (member-equal acl2::a acl2::x))
                    (vl-assignlist-p (cdr acl2::a)))
           (implies (and (member-equal acl2::a acl2::x)
                         (vl-duperhs-alistp acl2::x))
                    (vl-assignlist-p (cdr acl2::a))))
      :rule-classes ((:rewrite)))

    Theorem: vl-expr-p-of-car-when-member-equal-of-vl-duperhs-alistp

    (defthm vl-expr-p-of-car-when-member-equal-of-vl-duperhs-alistp
      (and (implies (and (vl-duperhs-alistp acl2::x)
                         (member-equal acl2::a acl2::x))
                    (vl-expr-p (car acl2::a)))
           (implies (and (member-equal acl2::a acl2::x)
                         (vl-duperhs-alistp acl2::x))
                    (vl-expr-p (car acl2::a))))
      :rule-classes ((:rewrite)))

    Theorem: consp-when-member-equal-of-vl-duperhs-alistp

    (defthm consp-when-member-equal-of-vl-duperhs-alistp
      (implies (and (vl-duperhs-alistp acl2::x)
                    (member-equal acl2::a acl2::x))
               (consp acl2::a))
      :rule-classes
      ((:rewrite :backchain-limit-lst (0 0))
       (:rewrite :backchain-limit-lst (0 0)
                 :corollary (implies (if (member-equal acl2::a acl2::x)
                                         (vl-duperhs-alistp acl2::x)
                                       'nil)
                                     (consp acl2::a)))))

    Theorem: vl-assignlist-p-of-cdr-of-assoc-when-vl-duperhs-alistp

    (defthm vl-assignlist-p-of-cdr-of-assoc-when-vl-duperhs-alistp
      (implies (vl-duperhs-alistp acl2::x)
               (vl-assignlist-p (cdr (assoc-equal acl2::k acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alistp-of-fast-alist-clean

    (defthm vl-duperhs-alistp-of-fast-alist-clean
      (implies (vl-duperhs-alistp acl2::x)
               (vl-duperhs-alistp (fast-alist-clean acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alistp-of-hons-shrink-alist

    (defthm vl-duperhs-alistp-of-hons-shrink-alist
      (implies (and (vl-duperhs-alistp acl2::x)
                    (vl-duperhs-alistp acl2::y))
               (vl-duperhs-alistp (hons-shrink-alist acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alistp-of-hons-acons

    (defthm vl-duperhs-alistp-of-hons-acons
      (equal (vl-duperhs-alistp (hons-acons acl2::a acl2::n acl2::x))
             (and (vl-expr-p acl2::a)
                  (vl-assignlist-p acl2::n)
                  (vl-duperhs-alistp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-assignlist-p-of-cdr-of-hons-assoc-equal-when-vl-duperhs-alistp

    (defthm
      vl-assignlist-p-of-cdr-of-hons-assoc-equal-when-vl-duperhs-alistp
      (implies
           (vl-duperhs-alistp acl2::x)
           (vl-assignlist-p (cdr (hons-assoc-equal acl2::k acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: vl-expr-p-of-caar-when-vl-duperhs-alistp

    (defthm vl-expr-p-of-caar-when-vl-duperhs-alistp
      (implies (vl-duperhs-alistp acl2::x)
               (iff (vl-expr-p (caar acl2::x))
                    (consp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-assignlist-p-of-cdar-when-vl-duperhs-alistp

    (defthm vl-assignlist-p-of-cdar-when-vl-duperhs-alistp
      (implies (vl-duperhs-alistp acl2::x)
               (vl-assignlist-p (cdar acl2::x)))
      :rule-classes ((:rewrite)))