• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Community
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
        • Warnings
        • Primitives
        • Use-set
        • Syntax
        • Getting-started
        • Utilities
        • Loader
        • Transforms
        • Lint
        • Mlib
          • Scopestack
          • Filtering-by-name
          • Vl-namefactory
          • Substitution
          • Allexprs
          • Hid-tools
          • Vl-consteval
          • Range-tools
          • Lvalexprs
          • Hierarchy
          • Finding-by-name
          • Expr-tools
          • Expr-slicing
            • Vl-expr-sliceable-p
              • Vl-exprlist-sliceable-p
            • Vl-msb-bitslice-expr
          • Stripping-functions
          • Stmt-tools
          • Modnamespace
          • Vl-parse-expr-from-str
          • Welltyped
          • Reordering-by-name
          • Flat-warnings
          • Genblob
          • Expr-building
          • Datatype-tools
          • Syscalls
          • Relocate
          • Expr-cleaning
          • Namemangle
          • Caremask
          • Port-tools
          • Lvalues
        • Server
        • Kit
        • Printer
        • Esim-vl
        • Well-formedness
      • Sv
      • Fgl
      • Vwsim
      • Vl
      • X86isa
      • Svl
      • Rtl
    • Software-verification
    • Math
    • Testing-utilities
  • Expr-slicing

Vl-expr-sliceable-p

(vl-expr-sliceable-p x) determines if the expression x is sliceable.

Signature
(vl-expr-sliceable-p x) → *
Arguments
x — Guard (vl-expr-p x).

Theorem: vl-exprlist-sliceable-p-of-cons

(defthm vl-exprlist-sliceable-p-of-cons
  (equal (vl-exprlist-sliceable-p (cons acl2::a acl2::x))
         (and (vl-expr-sliceable-p acl2::a)
              (vl-exprlist-sliceable-p acl2::x)))
  :rule-classes ((:rewrite)))

Theorem: vl-exprlist-sliceable-p-of-cdr-when-vl-exprlist-sliceable-p

(defthm vl-exprlist-sliceable-p-of-cdr-when-vl-exprlist-sliceable-p
  (implies (vl-exprlist-sliceable-p (double-rewrite acl2::x))
           (vl-exprlist-sliceable-p (cdr acl2::x)))
  :rule-classes ((:rewrite)))

Theorem: vl-exprlist-sliceable-p-when-not-consp

(defthm vl-exprlist-sliceable-p-when-not-consp
  (implies (not (consp acl2::x))
           (vl-exprlist-sliceable-p acl2::x))
  :rule-classes ((:rewrite)))

Theorem: vl-expr-sliceable-p-of-car-when-vl-exprlist-sliceable-p

(defthm vl-expr-sliceable-p-of-car-when-vl-exprlist-sliceable-p
  (implies (vl-exprlist-sliceable-p acl2::x)
           (iff (vl-expr-sliceable-p (car acl2::x))
                (or (consp acl2::x)
                    (vl-expr-sliceable-p nil))))
  :rule-classes ((:rewrite)))

Theorem: vl-exprlist-sliceable-p-of-append

(defthm vl-exprlist-sliceable-p-of-append
  (equal (vl-exprlist-sliceable-p (append acl2::a acl2::b))
         (and (vl-exprlist-sliceable-p acl2::a)
              (vl-exprlist-sliceable-p acl2::b)))
  :rule-classes ((:rewrite)))

Theorem: vl-exprlist-sliceable-p-of-list-fix

(defthm vl-exprlist-sliceable-p-of-list-fix
  (equal (vl-exprlist-sliceable-p (list-fix acl2::x))
         (vl-exprlist-sliceable-p acl2::x))
  :rule-classes ((:rewrite)))

Theorem: vl-exprlist-sliceable-p-of-sfix

(defthm vl-exprlist-sliceable-p-of-sfix
  (iff (vl-exprlist-sliceable-p (sfix acl2::x))
       (or (vl-exprlist-sliceable-p acl2::x)
           (not (setp acl2::x))))
  :rule-classes ((:rewrite)))

Theorem: vl-exprlist-sliceable-p-of-insert

(defthm vl-exprlist-sliceable-p-of-insert
  (iff (vl-exprlist-sliceable-p (insert acl2::a acl2::x))
       (and (vl-exprlist-sliceable-p (sfix acl2::x))
            (vl-expr-sliceable-p acl2::a)))
  :rule-classes ((:rewrite)))

Theorem: vl-exprlist-sliceable-p-of-delete

(defthm vl-exprlist-sliceable-p-of-delete
  (implies (vl-exprlist-sliceable-p acl2::x)
           (vl-exprlist-sliceable-p (delete acl2::k acl2::x)))
  :rule-classes ((:rewrite)))

Theorem: vl-exprlist-sliceable-p-of-mergesort

(defthm vl-exprlist-sliceable-p-of-mergesort
  (iff (vl-exprlist-sliceable-p (mergesort acl2::x))
       (vl-exprlist-sliceable-p (list-fix acl2::x)))
  :rule-classes ((:rewrite)))

Theorem: vl-exprlist-sliceable-p-of-union

(defthm vl-exprlist-sliceable-p-of-union
  (iff (vl-exprlist-sliceable-p (union acl2::x acl2::y))
       (and (vl-exprlist-sliceable-p (sfix acl2::x))
            (vl-exprlist-sliceable-p (sfix acl2::y))))
  :rule-classes ((:rewrite)))

Theorem: vl-exprlist-sliceable-p-of-intersect-1

(defthm vl-exprlist-sliceable-p-of-intersect-1
  (implies (vl-exprlist-sliceable-p acl2::x)
           (vl-exprlist-sliceable-p (intersect acl2::x acl2::y)))
  :rule-classes ((:rewrite)))

Theorem: vl-exprlist-sliceable-p-of-intersect-2

(defthm vl-exprlist-sliceable-p-of-intersect-2
  (implies (vl-exprlist-sliceable-p acl2::y)
           (vl-exprlist-sliceable-p (intersect acl2::x acl2::y)))
  :rule-classes ((:rewrite)))

Theorem: vl-exprlist-sliceable-p-of-difference

(defthm vl-exprlist-sliceable-p-of-difference
  (implies (vl-exprlist-sliceable-p acl2::x)
           (vl-exprlist-sliceable-p (difference acl2::x acl2::y)))
  :rule-classes ((:rewrite)))

Theorem: vl-exprlist-sliceable-p-of-duplicated-members

(defthm vl-exprlist-sliceable-p-of-duplicated-members
  (implies (vl-exprlist-sliceable-p acl2::x)
           (vl-exprlist-sliceable-p (duplicated-members acl2::x)))
  :rule-classes ((:rewrite)))

Theorem: vl-exprlist-sliceable-p-of-rev

(defthm vl-exprlist-sliceable-p-of-rev
  (equal (vl-exprlist-sliceable-p (rev acl2::x))
         (vl-exprlist-sliceable-p (list-fix acl2::x)))
  :rule-classes ((:rewrite)))

Theorem: vl-exprlist-sliceable-p-of-rcons

(defthm vl-exprlist-sliceable-p-of-rcons
  (iff (vl-exprlist-sliceable-p (acl2::rcons acl2::a acl2::x))
       (and (vl-expr-sliceable-p acl2::a)
            (vl-exprlist-sliceable-p (list-fix acl2::x))))
  :rule-classes ((:rewrite)))

Theorem: vl-expr-sliceable-p-when-member-equal-of-vl-exprlist-sliceable-p

(defthm
   vl-expr-sliceable-p-when-member-equal-of-vl-exprlist-sliceable-p
  (and (implies (and (member-equal acl2::a acl2::x)
                     (vl-exprlist-sliceable-p acl2::x))
                (vl-expr-sliceable-p acl2::a))
       (implies (and (vl-exprlist-sliceable-p acl2::x)
                     (member-equal acl2::a acl2::x))
                (vl-expr-sliceable-p acl2::a)))
  :rule-classes ((:rewrite)))

Theorem: vl-exprlist-sliceable-p-when-subsetp-equal

(defthm vl-exprlist-sliceable-p-when-subsetp-equal
  (and (implies (and (subsetp-equal acl2::x acl2::y)
                     (vl-exprlist-sliceable-p acl2::y))
                (vl-exprlist-sliceable-p acl2::x))
       (implies (and (vl-exprlist-sliceable-p acl2::y)
                     (subsetp-equal acl2::x acl2::y))
                (vl-exprlist-sliceable-p acl2::x)))
  :rule-classes ((:rewrite)))

Theorem: vl-exprlist-sliceable-p-set-equiv-congruence

(defthm vl-exprlist-sliceable-p-set-equiv-congruence
  (implies (set-equiv acl2::x acl2::y)
           (equal (vl-exprlist-sliceable-p acl2::x)
                  (vl-exprlist-sliceable-p acl2::y)))
  :rule-classes :congruence)

Theorem: vl-exprlist-sliceable-p-of-set-difference-equal

(defthm vl-exprlist-sliceable-p-of-set-difference-equal
 (implies
   (vl-exprlist-sliceable-p acl2::x)
   (vl-exprlist-sliceable-p (set-difference-equal acl2::x acl2::y)))
 :rule-classes ((:rewrite)))

Theorem: vl-exprlist-sliceable-p-of-intersection-equal-1

(defthm vl-exprlist-sliceable-p-of-intersection-equal-1
 (implies
     (vl-exprlist-sliceable-p (double-rewrite acl2::x))
     (vl-exprlist-sliceable-p (intersection-equal acl2::x acl2::y)))
 :rule-classes ((:rewrite)))

Theorem: vl-exprlist-sliceable-p-of-intersection-equal-2

(defthm vl-exprlist-sliceable-p-of-intersection-equal-2
 (implies
     (vl-exprlist-sliceable-p (double-rewrite acl2::y))
     (vl-exprlist-sliceable-p (intersection-equal acl2::x acl2::y)))
 :rule-classes ((:rewrite)))

Theorem: vl-exprlist-sliceable-p-of-union-equal

(defthm vl-exprlist-sliceable-p-of-union-equal
  (equal (vl-exprlist-sliceable-p (union-equal acl2::x acl2::y))
         (and (vl-exprlist-sliceable-p (list-fix acl2::x))
              (vl-exprlist-sliceable-p (double-rewrite acl2::y))))
  :rule-classes ((:rewrite)))

Theorem: vl-exprlist-sliceable-p-of-take

(defthm vl-exprlist-sliceable-p-of-take
  (implies (vl-exprlist-sliceable-p (double-rewrite acl2::x))
           (iff (vl-exprlist-sliceable-p (take acl2::n acl2::x))
                (or (vl-expr-sliceable-p nil)
                    (<= (nfix acl2::n) (len acl2::x)))))
  :rule-classes ((:rewrite)))

Theorem: vl-exprlist-sliceable-p-of-repeat

(defthm vl-exprlist-sliceable-p-of-repeat
  (iff (vl-exprlist-sliceable-p (repeat acl2::n acl2::x))
       (or (vl-expr-sliceable-p acl2::x)
           (zp acl2::n)))
  :rule-classes ((:rewrite)))

Theorem: vl-expr-sliceable-p-of-nth-when-vl-exprlist-sliceable-p

(defthm vl-expr-sliceable-p-of-nth-when-vl-exprlist-sliceable-p
  (implies (and (vl-exprlist-sliceable-p acl2::x)
                (< (nfix acl2::n) (len acl2::x)))
           (vl-expr-sliceable-p (nth acl2::n acl2::x)))
  :rule-classes ((:rewrite)))

Theorem: vl-exprlist-sliceable-p-of-update-nth

(defthm vl-exprlist-sliceable-p-of-update-nth
 (implies
  (vl-exprlist-sliceable-p (double-rewrite acl2::x))
  (iff
      (vl-exprlist-sliceable-p (update-nth acl2::n acl2::y acl2::x))
      (and (vl-expr-sliceable-p acl2::y)
           (or (<= (nfix acl2::n) (len acl2::x))
               (vl-expr-sliceable-p nil)))))
 :rule-classes ((:rewrite)))

Theorem: vl-exprlist-sliceable-p-of-butlast

(defthm vl-exprlist-sliceable-p-of-butlast
  (implies (vl-exprlist-sliceable-p (double-rewrite acl2::x))
           (vl-exprlist-sliceable-p (butlast acl2::x acl2::n)))
  :rule-classes ((:rewrite)))

Theorem: vl-exprlist-sliceable-p-of-nthcdr

(defthm vl-exprlist-sliceable-p-of-nthcdr
  (implies (vl-exprlist-sliceable-p (double-rewrite acl2::x))
           (vl-exprlist-sliceable-p (nthcdr acl2::n acl2::x)))
  :rule-classes ((:rewrite)))

Theorem: vl-exprlist-sliceable-p-of-last

(defthm vl-exprlist-sliceable-p-of-last
  (implies (vl-exprlist-sliceable-p (double-rewrite acl2::x))
           (vl-exprlist-sliceable-p (last acl2::x)))
  :rule-classes ((:rewrite)))

Theorem: vl-exprlist-sliceable-p-of-remove

(defthm vl-exprlist-sliceable-p-of-remove
  (implies (vl-exprlist-sliceable-p acl2::x)
           (vl-exprlist-sliceable-p (remove acl2::a acl2::x)))
  :rule-classes ((:rewrite)))

Theorem: vl-exprlist-sliceable-p-of-revappend

(defthm vl-exprlist-sliceable-p-of-revappend
  (equal (vl-exprlist-sliceable-p (revappend acl2::x acl2::y))
         (and (vl-exprlist-sliceable-p (list-fix acl2::x))
              (vl-exprlist-sliceable-p acl2::y)))
  :rule-classes ((:rewrite)))

Theorem: vl-expr-sliceable-p-of-vl-expr-fix-x

(defthm vl-expr-sliceable-p-of-vl-expr-fix-x
  (equal (vl-expr-sliceable-p (vl-expr-fix x))
         (vl-expr-sliceable-p x)))

Theorem: vl-exprlist-sliceable-p-of-vl-exprlist-fix-x

(defthm vl-exprlist-sliceable-p-of-vl-exprlist-fix-x
  (equal (vl-exprlist-sliceable-p (vl-exprlist-fix x))
         (vl-exprlist-sliceable-p x)))

Theorem: vl-expr-sliceable-p-vl-expr-equiv-congruence-on-x

(defthm vl-expr-sliceable-p-vl-expr-equiv-congruence-on-x
  (implies (vl-expr-equiv x x-equiv)
           (equal (vl-expr-sliceable-p x)
                  (vl-expr-sliceable-p x-equiv)))
  :rule-classes :congruence)

Theorem: vl-exprlist-sliceable-p-vl-exprlist-equiv-congruence-on-x

(defthm vl-exprlist-sliceable-p-vl-exprlist-equiv-congruence-on-x
  (implies (vl-exprlist-equiv x x-equiv)
           (equal (vl-exprlist-sliceable-p x)
                  (vl-exprlist-sliceable-p x-equiv)))
  :rule-classes :congruence)

Subtopics

Vl-exprlist-sliceable-p