• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Community
    • Proof-automation
    • ACL2
    • Macro-libraries
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
        • Symbolic-test-vectors
        • Esim-primitives
        • E-conversion
          • Vl-ealist-p
          • Modinsts-to-eoccs
          • Vl-module-make-esim
          • Exploding-vectors
            • Vl-wirealist-p
              • Vl-msb-expr-bitlist
              • Vl-plain-wire-name
              • Vl-module-wirealist
              • Vl-emodwires-from-high-to-low
              • Vl-vardecl-msb-emodwires
              • Vl-vardecllist-to-wirealist
              • Vl-emodwires-from-msb-to-lsb
              • Vl-verilogify-emodwirelist
                • Vl-match-contiguous-indices
                  • Vl-verilogify-merged-indices
                  • Vl-merge-contiguous-indices
              • Emodwire-encoding
              • Vl-emodwire-p
              • Vl-emodwirelistlist
              • Vl-emodwirelist
            • Resolving-multiple-drivers
            • Vl-modulelist-make-esims
            • Vl-module-check-e-ok
            • Vl-collect-design-wires
            • Adding-z-drivers
            • Vl-design-to-e
            • Vl-design-to-e-check-ports
            • Vl-design-to-e-main
            • Port-bit-checking
          • Esim-steps
          • Patterns
          • Mod-internal-paths
          • Defmodules
          • Esim-simplify-update-fns
          • Esim-tutorial
          • Esim-vl
        • Vl2014
        • Sv
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Vl-verilogify-emodwirelist

    Vl-match-contiguous-indices

    Identify one strictly increasing segment of a vl-maybe-nat-listp.

    (vl-match-contiguous-indices n x) tries to consume the leading portion of x if it counts up from n. It returns (mv range-end rest). Here's an illustrative example:

    (vl-match-contiguous-indices 1 '(2 3 4 5 10 11 12))
      -->
    (mv 5 (10 11 12))

    We use when collapsing emod names into Verilog-style names; see vl-merge-contiguous-indices.

    Definitions and Theorems

    Function: vl-match-contiguous-indices

    (defun vl-match-contiguous-indices (n x)
      (declare (xargs :guard (and (maybe-natp n)
                                  (vl-maybe-nat-listp x))))
      (if (or (not (natp n))
              (atom x)
              (not (equal (car x) (+ n 1))))
          (mv n x)
        (vl-match-contiguous-indices (+ n 1)
                                     (cdr x))))

    Theorem: maybe-natp-of-vl-match-contiguous-indices

    (defthm maybe-natp-of-vl-match-contiguous-indices
      (implies
           (and (force (maybe-natp n))
                (force (vl-maybe-nat-listp x)))
           (maybe-natp (mv-nth 0 (vl-match-contiguous-indices n x)))))

    Theorem: vl-maybe-nat-listp-of-vl-match-contiguous-indices

    (defthm vl-maybe-nat-listp-of-vl-match-contiguous-indices
      (implies (and (force (maybe-natp n))
                    (force (vl-maybe-nat-listp x)))
               (vl-maybe-nat-listp
                    (mv-nth 1 (vl-match-contiguous-indices n x)))))

    Theorem: len-of-vl-match-contiguous-indices

    (defthm len-of-vl-match-contiguous-indices
     (implies (not (equal n
                          (mv-nth 0 (vl-match-contiguous-indices n x))))
              (< (len (mv-nth 1 (vl-match-contiguous-indices n x)))
                 (len x)))
     :rule-classes ((:rewrite) (:linear)))

    Theorem: vl-match-contiguous-indices-fails-on-nil

    (defthm vl-match-contiguous-indices-fails-on-nil
      (equal (mv-nth 0 (vl-match-contiguous-indices nil x))
             nil))

    Theorem: vl-match-contiguous-indices-monotonic-on-success

    (defthm vl-match-contiguous-indices-monotonic-on-success
     (implies
         (and (not (equal n
                          (mv-nth 0 (vl-match-contiguous-indices n x))))
              (force (maybe-natp n))
              (force (vl-maybe-nat-listp x)))
         (< n
            (mv-nth 0 (vl-match-contiguous-indices n x))))
     :rule-classes ((:rewrite) (:linear)))

    Theorem: vl-match-contiguous-indices-exists-on-success

    (defthm vl-match-contiguous-indices-exists-on-success
     (implies
         (and (not (equal n
                          (mv-nth 0 (vl-match-contiguous-indices n x))))
              (force (maybe-natp n))
              (force (vl-maybe-nat-listp x)))
         (natp (mv-nth 0 (vl-match-contiguous-indices n x)))))