• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Community
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
        • Warnings
        • Primitives
        • Use-set
        • Syntax
        • Getting-started
        • Utilities
        • Loader
        • Transforms
          • Expression-sizing
          • Occform
          • Oprewrite
          • Expand-functions
          • Delayredux
          • Unparameterization
          • Caseelim
          • Split
          • Selresolve
          • Weirdint-elim
          • Vl-delta
          • Replicate-insts
          • Rangeresolve
          • Propagate
          • Clean-selects
          • Clean-params
          • Blankargs
          • Inline-mods
          • Expr-simp
          • Trunc
          • Always-top
          • Gatesplit
          • Gate-elim
          • Expression-optimization
          • Elim-supplies
          • Wildelim
          • Drop-blankports
          • Clean-warnings
          • Addinstnames
          • Custom-transform-hooks
          • Annotate
            • Make-implicit-wires
            • Resolve-indexing
            • Origexprs
            • Argresolve
            • Portdecl-sign
            • Designwires
              • Vl-vardecllist-designwires
              • Vl-modulelist-designwires
                • Vl-module-designwires
                • Vl-vardecl-designwires
                • Vl-design-designwires
              • Udp-elim
              • Vl-annotate-design
            • Latchcode
            • Elim-unused-vars
            • Problem-modules
          • Lint
          • Mlib
          • Server
          • Kit
          • Printer
          • Esim-vl
          • Well-formedness
        • Sv
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Designwires

    Vl-modulelist-designwires

    (vl-modulelist-designwires x) maps vl-module-designwires across a list.

    Signature
    (vl-modulelist-designwires x) → new-x
    Arguments
    x — Guard (vl-modulelist-p x).
    Returns
    new-x — Type (vl-modulelist-p new-x).

    This is an ordinary defprojection.

    Definitions and Theorems

    Function: vl-modulelist-designwires-exec

    (defun vl-modulelist-designwires-exec (x acc)
      (declare (xargs :guard (vl-modulelist-p x)))
      (declare (xargs :guard t))
      (let ((__function__ 'vl-modulelist-designwires-exec))
        (declare (ignorable __function__))
        (if (consp x)
            (vl-modulelist-designwires-exec
                 (cdr x)
                 (cons (vl-module-designwires (car x))
                       acc))
          acc)))

    Function: vl-modulelist-designwires-nrev

    (defun vl-modulelist-designwires-nrev (x nrev)
      (declare (xargs :stobjs (nrev)))
      (declare (xargs :guard (vl-modulelist-p x)))
      (declare (xargs :guard t))
      (let ((__function__ 'vl-modulelist-designwires-nrev))
        (declare (ignorable __function__))
        (if (atom x)
            (nrev-fix nrev)
          (let ((nrev (nrev-push (vl-module-designwires (car x))
                                 nrev)))
            (vl-modulelist-designwires-nrev (cdr x)
                                            nrev)))))

    Function: vl-modulelist-designwires

    (defun vl-modulelist-designwires (x)
     (declare (xargs :guard (vl-modulelist-p x)))
     (declare (xargs :guard t))
     (let ((__function__ 'vl-modulelist-designwires))
      (declare (ignorable __function__))
      (mbe
         :logic
         (if (consp x)
             (cons (vl-module-designwires (car x))
                   (vl-modulelist-designwires (cdr x)))
           nil)
         :exec
         (if (atom x)
             nil
           (with-local-nrev (vl-modulelist-designwires-nrev x nrev))))))

    Theorem: vl-modulelist-p-of-vl-modulelist-designwires

    (defthm vl-modulelist-p-of-vl-modulelist-designwires
      (b* ((new-x (vl-modulelist-designwires x)))
        (vl-modulelist-p new-x))
      :rule-classes :rewrite)

    Theorem: vl-modulelist-designwires-of-vl-modulelist-fix-x

    (defthm vl-modulelist-designwires-of-vl-modulelist-fix-x
      (equal (vl-modulelist-designwires (vl-modulelist-fix x))
             (vl-modulelist-designwires x)))

    Theorem: vl-modulelist-designwires-vl-modulelist-equiv-congruence-on-x

    (defthm
          vl-modulelist-designwires-vl-modulelist-equiv-congruence-on-x
      (implies (vl-modulelist-equiv x x-equiv)
               (equal (vl-modulelist-designwires x)
                      (vl-modulelist-designwires x-equiv)))
      :rule-classes :congruence)

    Theorem: vl-modulelist-designwires-of-update-nth

    (defthm vl-modulelist-designwires-of-update-nth
     (implies
      (<= (nfix acl2::n) (len acl2::x))
      (equal
        (vl-modulelist-designwires (update-nth acl2::n acl2::v acl2::x))
        (update-nth acl2::n (vl-module-designwires acl2::v)
                    (vl-modulelist-designwires acl2::x))))
     :rule-classes ((:rewrite)))

    Theorem: vl-modulelist-designwires-of-revappend

    (defthm vl-modulelist-designwires-of-revappend
      (equal (vl-modulelist-designwires (revappend acl2::x acl2::y))
             (revappend (vl-modulelist-designwires acl2::x)
                        (vl-modulelist-designwires acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: nthcdr-of-vl-modulelist-designwires

    (defthm nthcdr-of-vl-modulelist-designwires
      (equal (nthcdr acl2::n
                     (vl-modulelist-designwires acl2::x))
             (vl-modulelist-designwires (nthcdr acl2::n acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: nth-of-vl-modulelist-designwires

    (defthm nth-of-vl-modulelist-designwires
      (equal (nth acl2::n
                  (vl-modulelist-designwires acl2::x))
             (and (< (nfix acl2::n) (len acl2::x))
                  (vl-module-designwires (nth acl2::n acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: vl-modulelist-designwires-nrev-removal

    (defthm vl-modulelist-designwires-nrev-removal
      (equal (vl-modulelist-designwires-nrev acl2::x nrev)
             (append nrev
                     (vl-modulelist-designwires acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-modulelist-designwires-exec-removal

    (defthm vl-modulelist-designwires-exec-removal
      (equal (vl-modulelist-designwires-exec acl2::x acl2::acc)
             (revappend (vl-modulelist-designwires acl2::x)
                        acl2::acc))
      :rule-classes ((:rewrite)))

    Theorem: vl-modulelist-designwires-of-take

    (defthm vl-modulelist-designwires-of-take
      (implies (<= (nfix acl2::n) (len acl2::x))
               (equal (vl-modulelist-designwires (take acl2::n acl2::x))
                      (take acl2::n
                            (vl-modulelist-designwires acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: set-equiv-congruence-over-vl-modulelist-designwires

    (defthm set-equiv-congruence-over-vl-modulelist-designwires
      (implies (set-equiv acl2::x acl2::y)
               (set-equiv (vl-modulelist-designwires acl2::x)
                          (vl-modulelist-designwires acl2::y)))
      :rule-classes ((:congruence)))

    Theorem: subsetp-of-vl-modulelist-designwires-when-subsetp

    (defthm subsetp-of-vl-modulelist-designwires-when-subsetp
      (implies (subsetp acl2::x acl2::y)
               (subsetp (vl-modulelist-designwires acl2::x)
                        (vl-modulelist-designwires acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: member-of-vl-module-designwires-in-vl-modulelist-designwires

    (defthm member-of-vl-module-designwires-in-vl-modulelist-designwires
      (implies (member acl2::k acl2::x)
               (member (vl-module-designwires acl2::k)
                       (vl-modulelist-designwires acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-modulelist-designwires-of-rev

    (defthm vl-modulelist-designwires-of-rev
      (equal (vl-modulelist-designwires (rev acl2::x))
             (rev (vl-modulelist-designwires acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-modulelist-designwires-of-list-fix

    (defthm vl-modulelist-designwires-of-list-fix
      (equal (vl-modulelist-designwires (list-fix acl2::x))
             (vl-modulelist-designwires acl2::x))
      :rule-classes ((:rewrite)))

    Theorem: vl-modulelist-designwires-of-append

    (defthm vl-modulelist-designwires-of-append
      (equal (vl-modulelist-designwires (append acl2::a acl2::b))
             (append (vl-modulelist-designwires acl2::a)
                     (vl-modulelist-designwires acl2::b)))
      :rule-classes ((:rewrite)))

    Theorem: cdr-of-vl-modulelist-designwires

    (defthm cdr-of-vl-modulelist-designwires
      (equal (cdr (vl-modulelist-designwires acl2::x))
             (vl-modulelist-designwires (cdr acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: car-of-vl-modulelist-designwires

    (defthm car-of-vl-modulelist-designwires
      (equal (car (vl-modulelist-designwires acl2::x))
             (and (consp acl2::x)
                  (vl-module-designwires (car acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: vl-modulelist-designwires-under-iff

    (defthm vl-modulelist-designwires-under-iff
      (iff (vl-modulelist-designwires acl2::x)
           (consp acl2::x))
      :rule-classes ((:rewrite)))

    Theorem: consp-of-vl-modulelist-designwires

    (defthm consp-of-vl-modulelist-designwires
      (equal (consp (vl-modulelist-designwires acl2::x))
             (consp acl2::x))
      :rule-classes ((:rewrite)))

    Theorem: len-of-vl-modulelist-designwires

    (defthm len-of-vl-modulelist-designwires
      (equal (len (vl-modulelist-designwires acl2::x))
             (len acl2::x))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-of-vl-modulelist-designwires

    (defthm true-listp-of-vl-modulelist-designwires
      (true-listp (vl-modulelist-designwires acl2::x))
      :rule-classes :type-prescription)

    Theorem: vl-modulelist-designwires-when-not-consp

    (defthm vl-modulelist-designwires-when-not-consp
      (implies (not (consp acl2::x))
               (equal (vl-modulelist-designwires acl2::x)
                      nil))
      :rule-classes ((:rewrite)))

    Theorem: vl-modulelist-designwires-of-cons

    (defthm vl-modulelist-designwires-of-cons
      (equal (vl-modulelist-designwires (cons acl2::a acl2::b))
             (cons (vl-module-designwires acl2::a)
                   (vl-modulelist-designwires acl2::b)))
      :rule-classes ((:rewrite)))