• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Community
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Set
        • Soft
        • C
        • Bv
        • Imp-language
        • Event-macros
        • Java
        • Bitcoin
        • Ethereum
        • Yul
          • Transformations
          • Language
            • Abstract-syntax
              • Escape
              • Swcase-list->value-list
              • Hex-digit-list->chars
              • Fundef-list->name-list
              • Literal
              • Path
              • Hex-string-rest-element
              • Plain-string
              • String-element
              • Hex-string-content-option
              • Hex-string-content
              • Identifier
              • Funcall-option
              • Expression-option
              • Statement-option
              • Literal-option
              • Identifier-option
              • Hex-string
              • Hex-quad
              • Hex-digit
              • Hex-pair
              • Data-value
              • Data-item
              • Statements-to-fundefs
              • String-element-list-result
              • Identifier-identifier-map-result
              • Swcase-result
              • String-element-result
              • Statement-result
              • Literal-result
              • Identifier-set-result
              • Identifier-result
              • Identifier-list-result
              • Fundef-result
              • Funcall-result
              • Expression-result
              • Escape-result
              • Path-result
              • Block-result
              • Objects
              • Statements/blocks/cases/fundefs
              • Identifier-list
              • Identifier-set
              • Identifier-identifier-map
              • Identifier-identifier-alist
                • Identifier-identifier-alistp
                  • Identifier-identifier-alist-fix
                  • Identifier-identifier-alist-equiv
                • Hex-string-rest-element-list
                • String-element-list
                • Path-list
                • Hex-digit-list
                • Literal-list
                • Fundef-list
                • Expressions/funcalls
                • Abstract-syntax-induction-schemas
              • Dynamic-semantics
              • Concrete-syntax
              • Static-soundness
              • Static-semantics
              • Errors
            • Yul-json
          • Zcash
          • ACL2-programming-language
          • Prime-fields
          • Json
          • Syntheto
          • File-io-light
          • Cryptography
          • Number-theory
          • Lists-light
          • Axe
          • Builtins
          • Solidity
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Identifier-identifier-alist

    Identifier-identifier-alistp

    Recognizer for identifier-identifier-alist.

    Signature
    (identifier-identifier-alistp x) → *

    Definitions and Theorems

    Function: identifier-identifier-alistp

    (defun identifier-identifier-alistp (x)
      (declare (xargs :guard t))
      (let ((__function__ 'identifier-identifier-alistp))
        (declare (ignorable __function__))
        (if (atom x)
            (eq x nil)
          (and (consp (car x))
               (identifierp (caar x))
               (identifierp (cdar x))
               (identifier-identifier-alistp (cdr x))))))

    Theorem: identifier-identifier-alistp-of-revappend

    (defthm identifier-identifier-alistp-of-revappend
      (equal (identifier-identifier-alistp (revappend acl2::x acl2::y))
             (and (identifier-identifier-alistp (list-fix acl2::x))
                  (identifier-identifier-alistp acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-identifier-alistp-of-remove

    (defthm identifier-identifier-alistp-of-remove
      (implies (identifier-identifier-alistp acl2::x)
               (identifier-identifier-alistp (remove acl2::a acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-identifier-alistp-of-last

    (defthm identifier-identifier-alistp-of-last
      (implies (identifier-identifier-alistp (double-rewrite acl2::x))
               (identifier-identifier-alistp (last acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-identifier-alistp-of-nthcdr

    (defthm identifier-identifier-alistp-of-nthcdr
      (implies (identifier-identifier-alistp (double-rewrite acl2::x))
               (identifier-identifier-alistp (nthcdr acl2::n acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-identifier-alistp-of-butlast

    (defthm identifier-identifier-alistp-of-butlast
      (implies (identifier-identifier-alistp (double-rewrite acl2::x))
               (identifier-identifier-alistp (butlast acl2::x acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-identifier-alistp-of-update-nth

    (defthm identifier-identifier-alistp-of-update-nth
      (implies (identifier-identifier-alistp (double-rewrite acl2::x))
               (iff (identifier-identifier-alistp
                         (update-nth acl2::n acl2::y acl2::x))
                    (and (and (consp acl2::y)
                              (identifierp (car acl2::y))
                              (identifierp (cdr acl2::y)))
                         (or (<= (nfix acl2::n) (len acl2::x))
                             (and (consp nil)
                                  (identifierp (car nil))
                                  (identifierp (cdr nil)))))))
      :rule-classes ((:rewrite)))

    Theorem: identifier-identifier-alistp-of-repeat

    (defthm identifier-identifier-alistp-of-repeat
      (iff (identifier-identifier-alistp (repeat acl2::n acl2::x))
           (or (and (consp acl2::x)
                    (identifierp (car acl2::x))
                    (identifierp (cdr acl2::x)))
               (zp acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-identifier-alistp-of-take

    (defthm identifier-identifier-alistp-of-take
     (implies (identifier-identifier-alistp (double-rewrite acl2::x))
              (iff (identifier-identifier-alistp (take acl2::n acl2::x))
                   (or (and (consp nil)
                            (identifierp (car nil))
                            (identifierp (cdr nil)))
                       (<= (nfix acl2::n) (len acl2::x)))))
     :rule-classes ((:rewrite)))

    Theorem: identifier-identifier-alistp-of-union-equal

    (defthm identifier-identifier-alistp-of-union-equal
     (equal
          (identifier-identifier-alistp (union-equal acl2::x acl2::y))
          (and (identifier-identifier-alistp (list-fix acl2::x))
               (identifier-identifier-alistp (double-rewrite acl2::y))))
     :rule-classes ((:rewrite)))

    Theorem: identifier-identifier-alistp-of-intersection-equal-2

    (defthm identifier-identifier-alistp-of-intersection-equal-2
      (implies (identifier-identifier-alistp (double-rewrite acl2::y))
               (identifier-identifier-alistp
                    (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-identifier-alistp-of-intersection-equal-1

    (defthm identifier-identifier-alistp-of-intersection-equal-1
      (implies (identifier-identifier-alistp (double-rewrite acl2::x))
               (identifier-identifier-alistp
                    (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-identifier-alistp-of-set-difference-equal

    (defthm identifier-identifier-alistp-of-set-difference-equal
      (implies (identifier-identifier-alistp acl2::x)
               (identifier-identifier-alistp
                    (set-difference-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-identifier-alistp-when-subsetp-equal

    (defthm identifier-identifier-alistp-when-subsetp-equal
      (and (implies (and (subsetp-equal acl2::x acl2::y)
                         (identifier-identifier-alistp acl2::y))
                    (equal (identifier-identifier-alistp acl2::x)
                           (true-listp acl2::x)))
           (implies (and (identifier-identifier-alistp acl2::y)
                         (subsetp-equal acl2::x acl2::y))
                    (equal (identifier-identifier-alistp acl2::x)
                           (true-listp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: identifier-identifier-alistp-of-rcons

    (defthm identifier-identifier-alistp-of-rcons
      (iff (identifier-identifier-alistp (rcons acl2::a acl2::x))
           (and (and (consp acl2::a)
                     (identifierp (car acl2::a))
                     (identifierp (cdr acl2::a)))
                (identifier-identifier-alistp (list-fix acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: identifier-identifier-alistp-of-append

    (defthm identifier-identifier-alistp-of-append
      (equal (identifier-identifier-alistp (append acl2::a acl2::b))
             (and (identifier-identifier-alistp (list-fix acl2::a))
                  (identifier-identifier-alistp acl2::b)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-identifier-alistp-of-rev

    (defthm identifier-identifier-alistp-of-rev
      (equal (identifier-identifier-alistp (rev acl2::x))
             (identifier-identifier-alistp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-identifier-alistp-of-duplicated-members

    (defthm identifier-identifier-alistp-of-duplicated-members
      (implies
           (identifier-identifier-alistp acl2::x)
           (identifier-identifier-alistp (duplicated-members acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-identifier-alistp-of-difference

    (defthm identifier-identifier-alistp-of-difference
      (implies
           (identifier-identifier-alistp acl2::x)
           (identifier-identifier-alistp (difference acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-identifier-alistp-of-intersect-2

    (defthm identifier-identifier-alistp-of-intersect-2
      (implies
           (identifier-identifier-alistp acl2::y)
           (identifier-identifier-alistp (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-identifier-alistp-of-intersect-1

    (defthm identifier-identifier-alistp-of-intersect-1
      (implies
           (identifier-identifier-alistp acl2::x)
           (identifier-identifier-alistp (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-identifier-alistp-of-union

    (defthm identifier-identifier-alistp-of-union
      (iff (identifier-identifier-alistp (union acl2::x acl2::y))
           (and (identifier-identifier-alistp (sfix acl2::x))
                (identifier-identifier-alistp (sfix acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: identifier-identifier-alistp-of-mergesort

    (defthm identifier-identifier-alistp-of-mergesort
      (iff (identifier-identifier-alistp (mergesort acl2::x))
           (identifier-identifier-alistp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-identifier-alistp-of-delete

    (defthm identifier-identifier-alistp-of-delete
      (implies (identifier-identifier-alistp acl2::x)
               (identifier-identifier-alistp (delete acl2::k acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-identifier-alistp-of-insert

    (defthm identifier-identifier-alistp-of-insert
      (iff (identifier-identifier-alistp (insert acl2::a acl2::x))
           (and (identifier-identifier-alistp (sfix acl2::x))
                (and (consp acl2::a)
                     (identifierp (car acl2::a))
                     (identifierp (cdr acl2::a)))))
      :rule-classes ((:rewrite)))

    Theorem: identifier-identifier-alistp-of-sfix

    (defthm identifier-identifier-alistp-of-sfix
      (iff (identifier-identifier-alistp (sfix acl2::x))
           (or (identifier-identifier-alistp acl2::x)
               (not (setp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: identifier-identifier-alistp-of-list-fix

    (defthm identifier-identifier-alistp-of-list-fix
      (implies (identifier-identifier-alistp acl2::x)
               (identifier-identifier-alistp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-when-identifier-identifier-alistp-compound-recognizer

    (defthm
       true-listp-when-identifier-identifier-alistp-compound-recognizer
      (implies (identifier-identifier-alistp acl2::x)
               (true-listp acl2::x))
      :rule-classes :compound-recognizer)

    Theorem: identifier-identifier-alistp-when-not-consp

    (defthm identifier-identifier-alistp-when-not-consp
      (implies (not (consp acl2::x))
               (equal (identifier-identifier-alistp acl2::x)
                      (not acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-identifier-alistp-of-cdr-when-identifier-identifier-alistp

    (defthm
     identifier-identifier-alistp-of-cdr-when-identifier-identifier-alistp
     (implies (identifier-identifier-alistp (double-rewrite acl2::x))
              (identifier-identifier-alistp (cdr acl2::x)))
     :rule-classes ((:rewrite)))

    Theorem: identifier-identifier-alistp-of-cons

    (defthm identifier-identifier-alistp-of-cons
      (equal (identifier-identifier-alistp (cons acl2::a acl2::x))
             (and (and (consp acl2::a)
                       (identifierp (car acl2::a))
                       (identifierp (cdr acl2::a)))
                  (identifier-identifier-alistp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-identifier-alistp-of-remove-assoc

    (defthm identifier-identifier-alistp-of-remove-assoc
      (implies (identifier-identifier-alistp acl2::x)
               (identifier-identifier-alistp
                    (remove-assoc-equal acl2::name acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-identifier-alistp-of-put-assoc

    (defthm identifier-identifier-alistp-of-put-assoc
      (implies (and (identifier-identifier-alistp acl2::x))
               (iff (identifier-identifier-alistp
                         (put-assoc-equal acl2::name acl2::val acl2::x))
                    (and (identifierp acl2::name)
                         (identifierp acl2::val))))
      :rule-classes ((:rewrite)))

    Theorem: identifier-identifier-alistp-of-fast-alist-clean

    (defthm identifier-identifier-alistp-of-fast-alist-clean
     (implies (identifier-identifier-alistp acl2::x)
              (identifier-identifier-alistp (fast-alist-clean acl2::x)))
     :rule-classes ((:rewrite)))

    Theorem: identifier-identifier-alistp-of-hons-shrink-alist

    (defthm identifier-identifier-alistp-of-hons-shrink-alist
      (implies (and (identifier-identifier-alistp acl2::x)
                    (identifier-identifier-alistp acl2::y))
               (identifier-identifier-alistp
                    (hons-shrink-alist acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-identifier-alistp-of-hons-acons

    (defthm identifier-identifier-alistp-of-hons-acons
      (equal (identifier-identifier-alistp
                  (hons-acons acl2::a acl2::n acl2::x))
             (and (identifierp acl2::a)
                  (identifierp acl2::n)
                  (identifier-identifier-alistp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifierp-of-cdr-of-hons-assoc-equal-when-identifier-identifier-alistp

    (defthm
     identifierp-of-cdr-of-hons-assoc-equal-when-identifier-identifier-alistp
     (implies
          (identifier-identifier-alistp acl2::x)
          (iff (identifierp (cdr (hons-assoc-equal acl2::k acl2::x)))
               (hons-assoc-equal acl2::k acl2::x)))
     :rule-classes ((:rewrite)))

    Theorem: alistp-when-identifier-identifier-alistp-rewrite

    (defthm alistp-when-identifier-identifier-alistp-rewrite
      (implies (identifier-identifier-alistp acl2::x)
               (alistp acl2::x))
      :rule-classes ((:rewrite)))

    Theorem: alistp-when-identifier-identifier-alistp

    (defthm alistp-when-identifier-identifier-alistp
      (implies (identifier-identifier-alistp acl2::x)
               (alistp acl2::x))
      :rule-classes :tau-system)

    Theorem: identifierp-of-cdar-when-identifier-identifier-alistp

    (defthm identifierp-of-cdar-when-identifier-identifier-alistp
      (implies (identifier-identifier-alistp acl2::x)
               (iff (identifierp (cdar acl2::x))
                    (consp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifierp-of-caar-when-identifier-identifier-alistp

    (defthm identifierp-of-caar-when-identifier-identifier-alistp
      (implies (identifier-identifier-alistp acl2::x)
               (iff (identifierp (caar acl2::x))
                    (consp acl2::x)))
      :rule-classes ((:rewrite)))