libflame  12600
Functions
bl1_gemm.c File Reference

(r12600)

Functions

void bl1_sgemm (trans1_t transa, trans1_t transb, int m, int k, int n, float *alpha, float *a, int a_rs, int a_cs, float *b, int b_rs, int b_cs, float *beta, float *c, int c_rs, int c_cs)
void bl1_dgemm (trans1_t transa, trans1_t transb, int m, int k, int n, double *alpha, double *a, int a_rs, int a_cs, double *b, int b_rs, int b_cs, double *beta, double *c, int c_rs, int c_cs)
void bl1_cgemm (trans1_t transa, trans1_t transb, int m, int k, int n, scomplex *alpha, scomplex *a, int a_rs, int a_cs, scomplex *b, int b_rs, int b_cs, scomplex *beta, scomplex *c, int c_rs, int c_cs)
void bl1_zgemm (trans1_t transa, trans1_t transb, int m, int k, int n, dcomplex *alpha, dcomplex *a, int a_rs, int a_cs, dcomplex *b, int b_rs, int b_cs, dcomplex *beta, dcomplex *c, int c_rs, int c_cs)
void bl1_sgemm_blas (trans1_t transa, trans1_t transb, int m, int n, int k, float *alpha, float *a, int lda, float *b, int ldb, float *beta, float *c, int ldc)
void bl1_dgemm_blas (trans1_t transa, trans1_t transb, int m, int n, int k, double *alpha, double *a, int lda, double *b, int ldb, double *beta, double *c, int ldc)
void bl1_cgemm_blas (trans1_t transa, trans1_t transb, int m, int n, int k, scomplex *alpha, scomplex *a, int lda, scomplex *b, int ldb, scomplex *beta, scomplex *c, int ldc)
void bl1_zgemm_blas (trans1_t transa, trans1_t transb, int m, int n, int k, dcomplex *alpha, dcomplex *a, int lda, dcomplex *b, int ldb, dcomplex *beta, dcomplex *c, int ldc)

Function Documentation

void bl1_cgemm ( trans1_t  transa,
trans1_t  transb,
int  m,
int  k,
int  n,
scomplex alpha,
scomplex a,
int  a_rs,
int  a_cs,
scomplex b,
int  b_rs,
int  b_cs,
scomplex beta,
scomplex c,
int  c_rs,
int  c_cs 
)

References bl1_c0(), bl1_c1(), bl1_callocm(), bl1_caxpymt(), bl1_cconjm(), bl1_ccopymt(), bl1_ccreate_contigm(), bl1_ccreate_contigmt(), bl1_cfree(), bl1_cfree_contigm(), bl1_cfree_saved_contigm(), bl1_cgemm_blas(), bl1_cscalm(), bl1_is_col_storage(), bl1_is_conjnotrans(), bl1_zero_dim3(), BLIS1_CONJ_NO_TRANSPOSE, BLIS1_NO_CONJUGATE, and BLIS1_TRANSPOSE.

Referenced by FLA_Gemm_external().

{
    int       m_save    = m;
    int       n_save    = n;
    scomplex* a_save    = a;
    scomplex* b_save    = b;
    scomplex* c_save    = c;
    int       a_rs_save = a_rs;
    int       a_cs_save = a_cs;
    int       b_rs_save = b_rs;
    int       b_cs_save = b_cs;
    int       c_rs_save = c_rs;
    int       c_cs_save = c_cs;
    scomplex  zero = bl1_c0();
    scomplex  one  = bl1_c1();
    scomplex* a_unswap;
    scomplex* b_unswap;
    scomplex* a_conj;
    scomplex* b_conj;
    scomplex* c_trans;
    int       lda, inca;
    int       ldb, incb;
    int       ldc, incc;
    int       lda_conj, inca_conj;
    int       ldb_conj, incb_conj;
    int       ldc_trans, incc_trans;
    int       m_gemm, n_gemm;
    int       gemm_needs_axpyt = FALSE;
    int       a_was_copied;
    int       b_was_copied;

    // Return early if possible.
    if ( bl1_zero_dim3( m, k, n ) )
    {
        bl1_cscalm( BLIS1_NO_CONJUGATE,
                    m,
                    n,
                    beta,
                    c, c_rs, c_cs );
        return;
    }

    // If necessary, allocate, initialize, and use a temporary contiguous
    // copy of each matrix rather than the original matrices.
    bl1_ccreate_contigmt( transa,
                          m,
                          k,
                          a_save, a_rs_save, a_cs_save,
                          &a,     &a_rs,     &a_cs );

    bl1_ccreate_contigmt( transb,
                          k,
                          n,
                          b_save, b_rs_save, b_cs_save,
                          &b,     &b_rs,     &b_cs );

    bl1_ccreate_contigm( m,
                         n,
                         c_save, c_rs_save, c_cs_save,
                         &c,     &c_rs,     &c_cs );

    // Figure out whether A and/or B was copied to contiguous memory. This
    // is used later to prevent redundant copying.
    a_was_copied = ( a != a_save );
    b_was_copied = ( b != b_save );

    // These are used to track the original values of a and b prior to any
    // operand swapping that might take place. This is necessary for proper
    // freeing of memory when one is a temporary contiguous matrix.
    a_unswap = a;
    b_unswap = b;

    // These are used to track the dimensions of the product of the
    // A and B operands to the BLAS invocation of gemm. These differ
    // from m and n when the operands need to be swapped.
    m_gemm = m;
    n_gemm = n;

    // Initialize with values assuming column-major storage.
    lda  = a_cs;
    inca = a_rs;
    ldb  = b_cs;
    incb = b_rs;
    ldc  = c_cs;
    incc = c_rs;

    // Adjust the parameters based on the storage of each matrix.
    if ( bl1_is_col_storage( c_rs, c_cs ) )
    {
        if ( bl1_is_col_storage( a_rs, a_cs ) )
        {
            if ( bl1_is_col_storage( b_rs, b_cs ) )
            {
                // requested operation: C_c += tr( A_c ) * tr( B_c )
                // effective operation: C_c += tr( A_c ) * tr( B_c )
            }
            else // if ( bl1_is_row_storage( b_rs, b_cs ) )
            {
                
                // requested operation: C_c += tr( A_c ) * tr( B_r )
                // effective operation: C_c += tr( A_c ) * tr( B_c )^T
                bl1_swap_ints( ldb, incb );

                bl1_toggle_trans( transb );
            }
        }
        else // if ( bl1_is_row_storage( a_rs, a_cs ) )
        {
            if ( bl1_is_col_storage( b_rs, b_cs ) )
            {
                // requested operation: C_c += tr( A_r )   * tr( B_c )
                // effective operation: C_c += tr( A_r )^T * tr( B_c )
                bl1_swap_ints( lda, inca );

                bl1_toggle_trans( transa );
            }
            else // if ( bl1_is_row_storage( b_rs, b_cs ) )
            {
                // requested operation: C_c +=   tr( A_r ) * tr( B_r )
                // effective operation: C_c += ( tr( B_c ) * tr( A_c ) )^T
                bl1_swap_ints( lda, inca );
                bl1_swap_ints( ldb, incb );

                bl1_cswap_pointers( a, b );
                bl1_swap_ints( a_was_copied, b_was_copied );
                bl1_swap_ints( lda, ldb );
                bl1_swap_ints( inca, incb );
                bl1_swap_trans( transa, transb );

                gemm_needs_axpyt = TRUE;
                bl1_swap_ints( m_gemm, n_gemm );
            }
        }
    }
    else // if ( bl1_is_row_storage( c_rs, c_cs ) )
    {
        if ( bl1_is_col_storage( a_rs, a_cs ) )
        {
            if ( bl1_is_col_storage( b_rs, b_cs ) )
            {
                // requested operation: C_r +=   tr( A_c ) * tr( B_c )
                // effective operation: C_c += ( tr( A_c ) * tr( B_c ) )^T
                bl1_swap_ints( ldc, incc );

                bl1_swap_ints( m, n );

                gemm_needs_axpyt = TRUE;
            }
            else // if ( bl1_is_row_storage( b_rs, b_cs ) )
            {
                // requested operation: C_r += tr( A_c ) * tr( B_r )
                // effective operation: C_c += tr( B_c ) * tr( A_c )^T
                bl1_swap_ints( ldc, incc );
                bl1_swap_ints( ldb, incb );

                bl1_toggle_trans( transa );

                bl1_swap_ints( m, n );
                bl1_swap_ints( m_gemm, n_gemm );
                bl1_cswap_pointers( a, b );
                bl1_swap_ints( a_was_copied, b_was_copied );
                bl1_swap_ints( lda, ldb );
                bl1_swap_ints( inca, incb );
                bl1_swap_trans( transa, transb );
            }
        }
        else // if ( bl1_is_row_storage( a_rs, a_cs ) )
        {
            if ( bl1_is_col_storage( b_rs, b_cs ) )
            {
                // requested operation: C_r += tr( A_r )   * tr( B_c )
                // effective operation: C_c += tr( B_c )^T * tr( A_c )
                bl1_swap_ints( ldc, incc );
                bl1_swap_ints( lda, inca );

                bl1_toggle_trans( transb );

                bl1_swap_ints( m, n );
                bl1_swap_ints( m_gemm, n_gemm );
                bl1_cswap_pointers( a, b );
                bl1_swap_ints( a_was_copied, b_was_copied );
                bl1_swap_ints( lda, ldb );
                bl1_swap_ints( inca, incb );
                bl1_swap_trans( transa, transb );
            }
            else // if ( bl1_is_row_storage( b_rs, b_cs ) )
            {
                // requested operation: C_r += tr( A_r ) * tr( B_r )
                // effective operation: C_c += tr( B_c ) * tr( A_c )
                bl1_swap_ints( lda, inca );
                bl1_swap_ints( ldb, incb );
                bl1_swap_ints( ldc, incc );

                bl1_swap_ints( m, n );
                bl1_swap_ints( m_gemm, n_gemm );
                bl1_cswap_pointers( a, b );
                bl1_swap_ints( a_was_copied, b_was_copied );
                bl1_swap_ints( lda, ldb );
                bl1_swap_ints( inca, incb );
                bl1_swap_trans( transa, transb );
            }
        }
    }

    // We need a temporary matrix for the case where A is conjugated.
    a_conj    = a;
    lda_conj  = lda;
    inca_conj = inca;

    // If transa indicates conjugate-no-transpose and A was not already
    // copied, then copy and conjugate it to a temporary matrix. Otherwise,
    // if transa indicates conjugate-no-transpose and A was already copied,
    // just conjugate it.
    if ( bl1_is_conjnotrans( transa ) && !a_was_copied )
    {
        a_conj    = bl1_callocm( m_gemm, k );
        lda_conj  = m_gemm;
        inca_conj = 1;

        bl1_ccopymt( BLIS1_CONJ_NO_TRANSPOSE,
                     m_gemm,
                     k,
                     a,      inca,      lda,
                     a_conj, inca_conj, lda_conj );
    }
    else if ( bl1_is_conjnotrans( transa ) && a_was_copied )
    {
        bl1_cconjm( m_gemm,
                    k,
                    a_conj, inca_conj, lda_conj );
    }

    // We need a temporary matrix for the case where B is conjugated.
    b_conj    = b;
    ldb_conj  = ldb;
    incb_conj = incb;

    // If transb indicates conjugate-no-transpose and B was not already
    // copied, then copy and conjugate it to a temporary matrix. Otherwise,
    // if transb indicates conjugate-no-transpose and B was already copied,
    // just conjugate it.
    if ( bl1_is_conjnotrans( transb ) && !b_was_copied )
    {
        b_conj    = bl1_callocm( k, n_gemm );
        ldb_conj  = k;
        incb_conj = 1;

        bl1_ccopymt( BLIS1_CONJ_NO_TRANSPOSE,
                     k,
                     n_gemm,
                     b,      incb,      ldb,
                     b_conj, incb_conj, ldb_conj );
    }
    else if ( bl1_is_conjnotrans( transb ) && b_was_copied )
    {
        bl1_cconjm( k,
                    n_gemm,
                    b_conj, incb_conj, ldb_conj );
    }

    // There are two cases where we need to perform the gemm and then axpy
    // the result into C with a transposition. We handle those cases here.
    if ( gemm_needs_axpyt )
    {
        // We need a temporary matrix for holding C^T. Notice that m and n
        // represent the dimensions of C, while m_gemm and n_gemm are the
        // dimensions of the actual product op(A)*op(B), which may be n-by-m
        // since the operands may have been swapped.
        c_trans    = bl1_callocm( m_gemm, n_gemm );
        ldc_trans  = m_gemm;
        incc_trans = 1;

        // Compute tr( A ) * tr( B ), where A and B may have been swapped
        // to reference the other, and store the result in C_trans.
        bl1_cgemm_blas( transa,
                        transb,
                        m_gemm,
                        n_gemm,
                        k,
                        alpha,
                        a_conj,  lda_conj,
                        b_conj,  ldb_conj,
                        &zero,
                        c_trans, ldc_trans );

        // Scale C by beta.
        bl1_cscalm( BLIS1_NO_CONJUGATE,
                    m,
                    n,
                    beta,
                    c, incc, ldc );
        
        // And finally, accumulate the matrix product in C_trans into C
        // with a transpose.
        bl1_caxpymt( BLIS1_TRANSPOSE,
                     m,
                     n,
                     &one,
                     c_trans, incc_trans, ldc_trans,
                     c,       incc,       ldc );

        // Free the temporary matrix for C.
        bl1_cfree( c_trans );
    }
    else // no extra axpyt step needed
    {
        bl1_cgemm_blas( transa,
                        transb,
                        m_gemm,
                        n_gemm,
                        k,
                        alpha,
                        a_conj, lda_conj,
                        b_conj, ldb_conj,
                        beta,
                        c,      ldc );
    }

    if ( bl1_is_conjnotrans( transa ) && !a_was_copied )
        bl1_cfree( a_conj );

    if ( bl1_is_conjnotrans( transb ) && !b_was_copied )
        bl1_cfree( b_conj );

    // Free any temporary contiguous matrices, copying the result back to
    // the original matrix.
    bl1_cfree_contigm( a_save,    a_rs_save, a_cs_save,
                       &a_unswap, &a_rs,     &a_cs );

    bl1_cfree_contigm( b_save,    b_rs_save, b_cs_save,
                       &b_unswap, &b_rs,     &b_cs );

    bl1_cfree_saved_contigm( m_save,
                             n_save,
                             c_save, c_rs_save, c_cs_save,
                             &c,     &c_rs,     &c_cs );
}
void bl1_cgemm_blas ( trans1_t  transa,
trans1_t  transb,
int  m,
int  n,
int  k,
scomplex alpha,
scomplex a,
int  lda,
scomplex b,
int  ldb,
scomplex beta,
scomplex c,
int  ldc 
)

References bl1_param_map_to_netlib_trans(), cblas_cgemm(), CblasColMajor, and F77_cgemm().

Referenced by bl1_cgemm().

{
#ifdef BLIS1_ENABLE_CBLAS_INTERFACES
    enum CBLAS_ORDER     cblas_order = CblasColMajor;
    enum CBLAS_TRANSPOSE cblas_transa;
    enum CBLAS_TRANSPOSE cblas_transb;

    bl1_param_map_to_netlib_trans( transa, &cblas_transa );
    bl1_param_map_to_netlib_trans( transb, &cblas_transb );

    cblas_cgemm( cblas_order,
                 cblas_transa,
                 cblas_transb,
                 m,
                 n,
                 k,
                 alpha,
                 a, lda,
                 b, ldb,
                 beta,
                 c, ldc );
#else
    char blas_transa;
    char blas_transb;

    bl1_param_map_to_netlib_trans( transa, &blas_transa );
    bl1_param_map_to_netlib_trans( transb, &blas_transb );

    F77_cgemm( &blas_transa,
               &blas_transb,
               &m,
               &n,
               &k,
               alpha,
               a, &lda,
               b, &ldb,
               beta,
               c, &ldc );
#endif
}
void bl1_dgemm ( trans1_t  transa,
trans1_t  transb,
int  m,
int  k,
int  n,
double *  alpha,
double *  a,
int  a_rs,
int  a_cs,
double *  b,
int  b_rs,
int  b_cs,
double *  beta,
double *  c,
int  c_rs,
int  c_cs 
)

References bl1_d0(), bl1_d1(), bl1_dallocm(), bl1_daxpymt(), bl1_dcreate_contigm(), bl1_dcreate_contigmt(), bl1_dfree(), bl1_dfree_contigm(), bl1_dfree_saved_contigm(), bl1_dgemm_blas(), bl1_dscalm(), bl1_is_col_storage(), bl1_zero_dim3(), BLIS1_NO_CONJUGATE, and BLIS1_TRANSPOSE.

Referenced by FLA_Bsvd_v_opd_var2(), FLA_Bsvd_v_opz_var2(), FLA_Gemm_external(), FLA_Tevd_v_opd_var2(), and FLA_Tevd_v_opz_var2().

{
    int       m_save    = m;
    int       n_save    = n;
    double*   a_save    = a;
    double*   b_save    = b;
    double*   c_save    = c;
    int       a_rs_save = a_rs;
    int       a_cs_save = a_cs;
    int       b_rs_save = b_rs;
    int       b_cs_save = b_cs;
    int       c_rs_save = c_rs;
    int       c_cs_save = c_cs;
    double    zero = bl1_d0();
    double    one  = bl1_d1();
    double*   a_unswap;
    double*   b_unswap;
    double*   c_trans;
    int       lda, inca;
    int       ldb, incb;
    int       ldc, incc;
    int       ldc_trans, incc_trans;
    int       m_gemm, n_gemm;
    int       gemm_needs_axpyt = FALSE;

    // Return early if possible.
    if ( bl1_zero_dim3( m, k, n ) )
    {
        bl1_dscalm( BLIS1_NO_CONJUGATE,
                    m,
                    n,
                    beta,
                    c, c_rs, c_cs );
        return;
    }

    // If necessary, allocate, initialize, and use a temporary contiguous
    // copy of each matrix rather than the original matrices.
    bl1_dcreate_contigmt( transa,
                          m,
                          k,
                          a_save, a_rs_save, a_cs_save,
                          &a,     &a_rs,     &a_cs );

    bl1_dcreate_contigmt( transb,
                          k,
                          n,
                          b_save, b_rs_save, b_cs_save,
                          &b,     &b_rs,     &b_cs );

    bl1_dcreate_contigm( m,
                         n,
                         c_save, c_rs_save, c_cs_save,
                         &c,     &c_rs,     &c_cs );

    // These are used to track the original values of a and b prior to any
    // operand swapping that might take place. This is necessary for proper
    // freeing of memory when one is a temporary contiguous matrix.
    a_unswap = a;
    b_unswap = b;

    // These are used to track the dimensions of the product of the
    // A and B operands to the BLAS invocation of gemm. These differ
    // from m and n when the operands need to be swapped.
    m_gemm = m;
    n_gemm = n;

    // Initialize with values assuming column-major storage.
    lda  = a_cs;
    inca = a_rs;
    ldb  = b_cs;
    incb = b_rs;
    ldc  = c_cs;
    incc = c_rs;

    // Adjust the parameters based on the storage of each matrix.
    if ( bl1_is_col_storage( c_rs, c_cs ) )
    {
        if ( bl1_is_col_storage( a_rs, a_cs ) )
        {
            if ( bl1_is_col_storage( b_rs, b_cs ) )
            {
                // requested operation: C_c += tr( A_c ) * tr( B_c )
                // effective operation: C_c += tr( A_c ) * tr( B_c )
            }
            else // if ( bl1_is_row_storage( b_rs, b_cs ) )
            {
                
                // requested operation: C_c += tr( A_c ) * tr( B_r )
                // effective operation: C_c += tr( A_c ) * tr( B_c )^T
                bl1_swap_ints( ldb, incb );

                bl1_toggle_trans( transb );
            }
        }
        else // if ( bl1_is_row_storage( a_rs, a_cs ) )
        {
            if ( bl1_is_col_storage( b_rs, b_cs ) )
            {
                // requested operation: C_c += tr( A_r )   * tr( B_c )
                // effective operation: C_c += tr( A_r )^T * tr( B_c )
                bl1_swap_ints( lda, inca );

                bl1_toggle_trans( transa );
            }
            else // if ( bl1_is_row_storage( b_rs, b_cs ) )
            {
                // requested operation: C_c +=   tr( A_r ) * tr( B_r )
                // effective operation: C_c += ( tr( B_c ) * tr( A_c ) )^T
                bl1_swap_ints( lda, inca );
                bl1_swap_ints( ldb, incb );

                bl1_dswap_pointers( a, b );
                bl1_swap_ints( lda, ldb );
                bl1_swap_ints( inca, incb );
                bl1_swap_trans( transa, transb );

                gemm_needs_axpyt = TRUE;
                bl1_swap_ints( m_gemm, n_gemm );
            }
        }
    }
    else // if ( bl1_is_row_storage( c_rs, c_cs ) )
    {
        if ( bl1_is_col_storage( a_rs, a_cs ) )
        {
            if ( bl1_is_col_storage( b_rs, b_cs ) )
            {
                // requested operation: C_r +=   tr( A_c ) * tr( B_c )
                // effective operation: C_c += ( tr( A_c ) * tr( B_c ) )^T
                bl1_swap_ints( ldc, incc );

                bl1_swap_ints( m, n );

                gemm_needs_axpyt = TRUE;
            }
            else // if ( bl1_is_row_storage( b_rs, b_cs ) )
            {
                // requested operation: C_r += tr( A_c ) * tr( B_r )
                // effective operation: C_c += tr( B_c ) * tr( A_c )^T
                bl1_swap_ints( ldc, incc );
                bl1_swap_ints( ldb, incb );

                bl1_toggle_trans( transa );

                bl1_swap_ints( m, n );
                bl1_swap_ints( m_gemm, n_gemm );
                bl1_dswap_pointers( a, b );
                bl1_swap_ints( lda, ldb );
                bl1_swap_ints( inca, incb );
                bl1_swap_trans( transa, transb );
            }
        }
        else // if ( bl1_is_row_storage( a_rs, a_cs ) )
        {
            if ( bl1_is_col_storage( b_rs, b_cs ) )
            {
                // requested operation: C_r += tr( A_r )   * tr( B_c )
                // effective operation: C_c += tr( B_c )^T * tr( A_c )
                bl1_swap_ints( ldc, incc );
                bl1_swap_ints( lda, inca );

                bl1_toggle_trans( transb );

                bl1_swap_ints( m, n );
                bl1_swap_ints( m_gemm, n_gemm );
                bl1_dswap_pointers( a, b );
                bl1_swap_ints( lda, ldb );
                bl1_swap_ints( inca, incb );
                bl1_swap_trans( transa, transb );
            }
            else // if ( bl1_is_row_storage( b_rs, b_cs ) )
            {
                // requested operation: C_r += tr( A_r ) * tr( B_r )
                // effective operation: C_c += tr( B_c ) * tr( A_c )
                bl1_swap_ints( lda, inca );
                bl1_swap_ints( ldb, incb );
                bl1_swap_ints( ldc, incc );

                bl1_swap_ints( m, n );
                bl1_swap_ints( m_gemm, n_gemm );
                bl1_dswap_pointers( a, b );
                bl1_swap_ints( lda, ldb );
                bl1_swap_ints( inca, incb );
                bl1_swap_trans( transa, transb );
            }
        }
    }

    // There are two cases where we need to perform the gemm and then axpy
    // the result into C with a transposition. We handle those cases here.
    if ( gemm_needs_axpyt )
    {
        // We need a temporary matrix for holding C^T. Notice that m and n
        // represent the dimensions of C, while m_gemm and n_gemm are the
        // dimensions of the actual product op(A)*op(B), which may be n-by-m
        // since the operands may have been swapped.
        c_trans    = bl1_dallocm( m_gemm, n_gemm );
        ldc_trans  = m_gemm;
        incc_trans = 1;

        // Compute tr( A ) * tr( B ), where A and B may have been swapped
        // to reference the other, and store the result in C_trans.
        bl1_dgemm_blas( transa,
                        transb,
                        m_gemm,
                        n_gemm,
                        k,
                        alpha,
                        a,       lda,
                        b,       ldb,
                        &zero,
                        c_trans, ldc_trans );

        // Scale C by beta.
        bl1_dscalm( BLIS1_NO_CONJUGATE,
                    m,
                    n,
                    beta,
                    c, incc, ldc );
        
        // And finally, accumulate the matrix product in C_trans into C
        // with a transpose.
        bl1_daxpymt( BLIS1_TRANSPOSE,
                     m,
                     n,
                     &one,
                     c_trans, incc_trans, ldc_trans,
                     c,       incc,       ldc );

        // Free the temporary matrix for C.
        bl1_dfree( c_trans );
    }
    else // no extra axpyt step needed
    {
        bl1_dgemm_blas( transa,
                        transb,
                        m_gemm,
                        n_gemm,
                        k,
                        alpha,
                        a, lda,
                        b, ldb,
                        beta,
                        c, ldc );
    }

    // Free any temporary contiguous matrices, copying the result back to
    // the original matrix.
    bl1_dfree_contigm( a_save,    a_rs_save, a_cs_save,
                       &a_unswap, &a_rs,     &a_cs );

    bl1_dfree_contigm( b_save,    b_rs_save, b_cs_save,
                       &b_unswap, &b_rs,     &b_cs );

    bl1_dfree_saved_contigm( m_save,
                             n_save,
                             c_save, c_rs_save, c_cs_save,
                             &c,     &c_rs,     &c_cs );
}
void bl1_dgemm_blas ( trans1_t  transa,
trans1_t  transb,
int  m,
int  n,
int  k,
double *  alpha,
double *  a,
int  lda,
double *  b,
int  ldb,
double *  beta,
double *  c,
int  ldc 
)

References bl1_param_map_to_netlib_trans(), cblas_dgemm(), CblasColMajor, and F77_dgemm().

Referenced by bl1_dgemm().

{
#ifdef BLIS1_ENABLE_CBLAS_INTERFACES
    enum CBLAS_ORDER     cblas_order = CblasColMajor;
    enum CBLAS_TRANSPOSE cblas_transa;
    enum CBLAS_TRANSPOSE cblas_transb;

    bl1_param_map_to_netlib_trans( transa, &cblas_transa );
    bl1_param_map_to_netlib_trans( transb, &cblas_transb );

    cblas_dgemm( cblas_order,
                 cblas_transa,
                 cblas_transb,
                 m,
                 n,
                 k,
                 *alpha,
                 a, lda,
                 b, ldb,
                 *beta,
                 c, ldc );
#else
    char blas_transa;
    char blas_transb;

    bl1_param_map_to_netlib_trans( transa, &blas_transa );
    bl1_param_map_to_netlib_trans( transb, &blas_transb );

    F77_dgemm( &blas_transa,
               &blas_transb,
               &m,
               &n,
               &k,
               alpha,
               a, &lda,
               b, &ldb,
               beta,
               c, &ldc );
#endif
}
void bl1_sgemm ( trans1_t  transa,
trans1_t  transb,
int  m,
int  k,
int  n,
float *  alpha,
float *  a,
int  a_rs,
int  a_cs,
float *  b,
int  b_rs,
int  b_cs,
float *  beta,
float *  c,
int  c_rs,
int  c_cs 
)

References bl1_is_col_storage(), bl1_s0(), bl1_s1(), bl1_sallocm(), bl1_saxpymt(), bl1_screate_contigm(), bl1_screate_contigmt(), bl1_sfree(), bl1_sfree_contigm(), bl1_sfree_saved_contigm(), bl1_sgemm_blas(), bl1_sscalm(), bl1_zero_dim3(), BLIS1_NO_CONJUGATE, and BLIS1_TRANSPOSE.

Referenced by FLA_Gemm_external().

{
    int       m_save    = m;
    int       n_save    = n;
    float*    a_save    = a;
    float*    b_save    = b;
    float*    c_save    = c;
    int       a_rs_save = a_rs;
    int       a_cs_save = a_cs;
    int       b_rs_save = b_rs;
    int       b_cs_save = b_cs;
    int       c_rs_save = c_rs;
    int       c_cs_save = c_cs;
    float     zero = bl1_s0();
    float     one  = bl1_s1();
    float*    a_unswap;
    float*    b_unswap;
    float*    c_trans;
    int       lda, inca;
    int       ldb, incb;
    int       ldc, incc;
    int       ldc_trans, incc_trans;
    int       m_gemm, n_gemm;
    int       gemm_needs_axpyt = FALSE;

    // Return early if possible.
    if ( bl1_zero_dim3( m, k, n ) )
    {
        bl1_sscalm( BLIS1_NO_CONJUGATE,
                    m,
                    n,
                    beta,
                    c, c_rs, c_cs );
        return;
    }

    // If necessary, allocate, initialize, and use a temporary contiguous
    // copy of each matrix rather than the original matrices.
    bl1_screate_contigmt( transa,
                          m,
                          k,
                          a_save, a_rs_save, a_cs_save,
                          &a,     &a_rs,     &a_cs );

    bl1_screate_contigmt( transb,
                          k,
                          n,
                          b_save, b_rs_save, b_cs_save,
                          &b,     &b_rs,     &b_cs );

    bl1_screate_contigm( m,
                         n,
                         c_save, c_rs_save, c_cs_save,
                         &c,     &c_rs,     &c_cs );

    // These are used to track the original values of a and b prior to any
    // operand swapping that might take place. This is necessary for proper
    // freeing of memory when one is a temporary contiguous matrix.
    a_unswap = a;
    b_unswap = b;

    // These are used to track the dimensions of the product of the
    // A and B operands to the BLAS invocation of gemm. These differ
    // from m and n when the operands need to be swapped.
    m_gemm = m;
    n_gemm = n;

    // Initialize with values assuming column-major storage.
    lda  = a_cs;
    inca = a_rs;
    ldb  = b_cs;
    incb = b_rs;
    ldc  = c_cs;
    incc = c_rs;

    // Adjust the parameters based on the storage of each matrix.
    if ( bl1_is_col_storage( c_rs, c_cs ) )
    {
        if ( bl1_is_col_storage( a_rs, a_cs ) )
        {
            if ( bl1_is_col_storage( b_rs, b_cs ) )
            {
                // requested operation: C_c += tr( A_c ) * tr( B_c )
                // effective operation: C_c += tr( A_c ) * tr( B_c )
            }
            else // if ( bl1_is_row_storage( b_rs, b_cs ) )
            {
                
                // requested operation: C_c += tr( A_c ) * tr( B_r )
                // effective operation: C_c += tr( A_c ) * tr( B_c )^T
                bl1_swap_ints( ldb, incb );

                bl1_toggle_trans( transb );
            }
        }
        else // if ( bl1_is_row_storage( a_rs, a_cs ) )
        {
            if ( bl1_is_col_storage( b_rs, b_cs ) )
            {
                // requested operation: C_c += tr( A_r )   * tr( B_c )
                // effective operation: C_c += tr( A_r )^T * tr( B_c )
                bl1_swap_ints( lda, inca );

                bl1_toggle_trans( transa );
            }
            else // if ( bl1_is_row_storage( b_rs, b_cs ) )
            {
                // requested operation: C_c +=   tr( A_r ) * tr( B_r )
                // effective operation: C_c += ( tr( B_c ) * tr( A_c ) )^T
                bl1_swap_ints( lda, inca );
                bl1_swap_ints( ldb, incb );

                bl1_sswap_pointers( a, b );
                bl1_swap_ints( lda, ldb );
                bl1_swap_ints( inca, incb );
                bl1_swap_trans( transa, transb );

                gemm_needs_axpyt = TRUE;
                bl1_swap_ints( m_gemm, n_gemm );
            }
        }
    }
    else // if ( bl1_is_row_storage( c_rs, c_cs ) )
    {
        if ( bl1_is_col_storage( a_rs, a_cs ) )
        {
            if ( bl1_is_col_storage( b_rs, b_cs ) )
            {
                // requested operation: C_r +=   tr( A_c ) * tr( B_c )
                // effective operation: C_c += ( tr( A_c ) * tr( B_c ) )^T
                bl1_swap_ints( ldc, incc );

                bl1_swap_ints( m, n );

                gemm_needs_axpyt = TRUE;
            }
            else // if ( bl1_is_row_storage( b_rs, b_cs ) )
            {
                // requested operation: C_r += tr( A_c ) * tr( B_r )
                // effective operation: C_c += tr( B_c ) * tr( A_c )^T
                bl1_swap_ints( ldc, incc );
                bl1_swap_ints( ldb, incb );

                bl1_toggle_trans( transa );

                bl1_swap_ints( m, n );
                bl1_swap_ints( m_gemm, n_gemm );
                bl1_sswap_pointers( a, b );
                bl1_swap_ints( lda, ldb );
                bl1_swap_ints( inca, incb );
                bl1_swap_trans( transa, transb );
            }
        }
        else // if ( bl1_is_row_storage( a_rs, a_cs ) )
        {
            if ( bl1_is_col_storage( b_rs, b_cs ) )
            {
                // requested operation: C_r += tr( A_r )   * tr( B_c )
                // effective operation: C_c += tr( B_c )^T * tr( A_c )
                bl1_swap_ints( ldc, incc );
                bl1_swap_ints( lda, inca );

                bl1_toggle_trans( transb );

                bl1_swap_ints( m, n );
                bl1_swap_ints( m_gemm, n_gemm );
                bl1_sswap_pointers( a, b );
                bl1_swap_ints( lda, ldb );
                bl1_swap_ints( inca, incb );
                bl1_swap_trans( transa, transb );
            }
            else // if ( bl1_is_row_storage( b_rs, b_cs ) )
            {
                // requested operation: C_r += tr( A_r ) * tr( B_r )
                // effective operation: C_c += tr( B_c ) * tr( A_c )
                bl1_swap_ints( lda, inca );
                bl1_swap_ints( ldb, incb );
                bl1_swap_ints( ldc, incc );

                bl1_swap_ints( m, n );
                bl1_swap_ints( m_gemm, n_gemm );
                bl1_sswap_pointers( a, b );
                bl1_swap_ints( lda, ldb );
                bl1_swap_ints( inca, incb );
                bl1_swap_trans( transa, transb );
            }
        }
    }

    // There are two cases where we need to perform the gemm and then axpy
    // the result into C with a transposition. We handle those cases here.
    if ( gemm_needs_axpyt )
    {
        // We need a temporary matrix for holding C^T. Notice that m and n
        // represent the dimensions of C, while m_gemm and n_gemm are the
        // dimensions of the actual product op(A)*op(B), which may be n-by-m
        // since the operands may have been swapped.
        c_trans    = bl1_sallocm( m_gemm, n_gemm );
        ldc_trans  = m_gemm;
        incc_trans = 1;

        // Compute tr( A ) * tr( B ), where A and B may have been swapped
        // to reference the other, and store the result in C_trans.
        bl1_sgemm_blas( transa,
                        transb,
                        m_gemm,
                        n_gemm,
                        k,
                        alpha,
                        a,       lda,
                        b,       ldb,
                        &zero,
                        c_trans, ldc_trans );

        // Scale C by beta.
        bl1_sscalm( BLIS1_NO_CONJUGATE,
                    m,
                    n,
                    beta,
                    c, incc, ldc );
        
        // And finally, accumulate the matrix product in C_trans into C
        // with a transpose.
        bl1_saxpymt( BLIS1_TRANSPOSE,
                     m,
                     n,
                     &one,
                     c_trans, incc_trans, ldc_trans,
                     c,       incc,       ldc );

        // Free the temporary matrix for C.
        bl1_sfree( c_trans );
    }
    else // no extra axpyt step needed
    {
        bl1_sgemm_blas( transa,
                        transb,
                        m_gemm,
                        n_gemm,
                        k,
                        alpha,
                        a, lda,
                        b, ldb,
                        beta,
                        c, ldc );
    }

    // Free any temporary contiguous matrices, copying the result back to
    // the original matrix.
    bl1_sfree_contigm( a_save,    a_rs_save, a_cs_save,
                       &a_unswap, &a_rs,     &a_cs );

    bl1_sfree_contigm( b_save,    b_rs_save, b_cs_save,
                       &b_unswap, &b_rs,     &b_cs );

    bl1_sfree_saved_contigm( m_save,
                             n_save,
                             c_save, c_rs_save, c_cs_save,
                             &c,     &c_rs,     &c_cs );
}
void bl1_sgemm_blas ( trans1_t  transa,
trans1_t  transb,
int  m,
int  n,
int  k,
float *  alpha,
float *  a,
int  lda,
float *  b,
int  ldb,
float *  beta,
float *  c,
int  ldc 
)

References bl1_param_map_to_netlib_trans(), cblas_sgemm(), CblasColMajor, and F77_sgemm().

Referenced by bl1_sgemm().

{
#ifdef BLIS1_ENABLE_CBLAS_INTERFACES
    enum CBLAS_ORDER     cblas_order = CblasColMajor;
    enum CBLAS_TRANSPOSE cblas_transa;
    enum CBLAS_TRANSPOSE cblas_transb;

    bl1_param_map_to_netlib_trans( transa, &cblas_transa );
    bl1_param_map_to_netlib_trans( transb, &cblas_transb );

    cblas_sgemm( cblas_order,
                 cblas_transa,
                 cblas_transb,
                 m,
                 n,
                 k,
                 *alpha,
                 a, lda,
                 b, ldb,
                 *beta,
                 c, ldc );
#else
    char blas_transa;
    char blas_transb;

    bl1_param_map_to_netlib_trans( transa, &blas_transa );
    bl1_param_map_to_netlib_trans( transb, &blas_transb );

    F77_sgemm( &blas_transa,
               &blas_transb,
               &m,
               &n,
               &k,
               alpha,
               a, &lda,
               b, &ldb,
               beta,
               c, &ldc );
#endif
}
void bl1_zgemm ( trans1_t  transa,
trans1_t  transb,
int  m,
int  k,
int  n,
dcomplex alpha,
dcomplex a,
int  a_rs,
int  a_cs,
dcomplex b,
int  b_rs,
int  b_cs,
dcomplex beta,
dcomplex c,
int  c_rs,
int  c_cs 
)

References bl1_is_col_storage(), bl1_is_conjnotrans(), bl1_z0(), bl1_z1(), bl1_zallocm(), bl1_zaxpymt(), bl1_zconjm(), bl1_zcopymt(), bl1_zcreate_contigm(), bl1_zcreate_contigmt(), bl1_zero_dim3(), bl1_zfree(), bl1_zfree_contigm(), bl1_zfree_saved_contigm(), bl1_zgemm_blas(), bl1_zscalm(), BLIS1_CONJ_NO_TRANSPOSE, BLIS1_NO_CONJUGATE, and BLIS1_TRANSPOSE.

Referenced by FLA_Gemm_external().

{
    int       m_save    = m;
    int       n_save    = n;
    dcomplex* a_save    = a;
    dcomplex* b_save    = b;
    dcomplex* c_save    = c;
    int       a_rs_save = a_rs;
    int       a_cs_save = a_cs;
    int       b_rs_save = b_rs;
    int       b_cs_save = b_cs;
    int       c_rs_save = c_rs;
    int       c_cs_save = c_cs;
    dcomplex  zero = bl1_z0();
    dcomplex  one  = bl1_z1();
    dcomplex* a_unswap;
    dcomplex* b_unswap;
    dcomplex* a_conj;
    dcomplex* b_conj;
    dcomplex* c_trans;
    int       lda, inca;
    int       ldb, incb;
    int       ldc, incc;
    int       lda_conj, inca_conj;
    int       ldb_conj, incb_conj;
    int       ldc_trans, incc_trans;
    int       m_gemm, n_gemm;
    int       gemm_needs_axpyt = FALSE;
    int       a_was_copied;
    int       b_was_copied;

    // Return early if possible.
    if ( bl1_zero_dim3( m, k, n ) )
    {
        bl1_zscalm( BLIS1_NO_CONJUGATE,
                    m,
                    n,
                    beta,
                    c, c_rs, c_cs );
        return;
    }

    // If necessary, allocate, initialize, and use a temporary contiguous
    // copy of each matrix rather than the original matrices.
    bl1_zcreate_contigmt( transa,
                          m,
                          k,
                          a_save, a_rs_save, a_cs_save,
                          &a,     &a_rs,     &a_cs );

    bl1_zcreate_contigmt( transb,
                          k,
                          n,
                          b_save, b_rs_save, b_cs_save,
                          &b,     &b_rs,     &b_cs );

    bl1_zcreate_contigm( m,
                         n,
                         c_save, c_rs_save, c_cs_save,
                         &c,     &c_rs,     &c_cs );

    // Figure out whether A and/or B was copied to contiguous memory. This
    // is used later to prevent redundant copying.
    a_was_copied = ( a != a_save );
    b_was_copied = ( b != b_save );

    // These are used to track the original values of a and b prior to any
    // operand swapping that might take place. This is necessary for proper
    // freeing of memory when one is a temporary contiguous matrix.
    a_unswap = a;
    b_unswap = b;

    // These are used to track the dimensions of the product of the
    // A and B operands to the BLAS invocation of gemm. These differ
    // from m and n when the operands need to be swapped.
    m_gemm = m;
    n_gemm = n;

    // Initialize with values assuming column-major storage.
    lda  = a_cs;
    inca = a_rs;
    ldb  = b_cs;
    incb = b_rs;
    ldc  = c_cs;
    incc = c_rs;

    // Adjust the parameters based on the storage of each matrix.
    if ( bl1_is_col_storage( c_rs, c_cs ) )
    {
        if ( bl1_is_col_storage( a_rs, a_cs ) )
        {
            if ( bl1_is_col_storage( b_rs, b_cs ) )
            {
                // requested operation: C_c += tr( A_c ) * tr( B_c )
                // effective operation: C_c += tr( A_c ) * tr( B_c )
            }
            else // if ( bl1_is_row_storage( b_rs, b_cs ) )
            {
                
                // requested operation: C_c += tr( A_c ) * tr( B_r )
                // effective operation: C_c += tr( A_c ) * tr( B_c )^T
                bl1_swap_ints( ldb, incb );

                bl1_toggle_trans( transb );
            }
        }
        else // if ( bl1_is_row_storage( a_rs, a_cs ) )
        {
            if ( bl1_is_col_storage( b_rs, b_cs ) )
            {
                // requested operation: C_c += tr( A_r )   * tr( B_c )
                // effective operation: C_c += tr( A_r )^T * tr( B_c )
                bl1_swap_ints( lda, inca );

                bl1_toggle_trans( transa );
            }
            else // if ( bl1_is_row_storage( b_rs, b_cs ) )
            {
                // requested operation: C_c +=   tr( A_r ) * tr( B_r )
                // effective operation: C_c += ( tr( B_c ) * tr( A_c ) )^T
                bl1_swap_ints( lda, inca );
                bl1_swap_ints( ldb, incb );

                bl1_zswap_pointers( a, b );
                bl1_swap_ints( a_was_copied, b_was_copied );
                bl1_swap_ints( lda, ldb );
                bl1_swap_ints( inca, incb );
                bl1_swap_trans( transa, transb );

                gemm_needs_axpyt = TRUE;
                bl1_swap_ints( m_gemm, n_gemm );
            }
        }
    }
    else // if ( bl1_is_row_storage( c_rs, c_cs ) )
    {
        if ( bl1_is_col_storage( a_rs, a_cs ) )
        {
            if ( bl1_is_col_storage( b_rs, b_cs ) )
            {
                // requested operation: C_r +=   tr( A_c ) * tr( B_c )
                // effective operation: C_c += ( tr( A_c ) * tr( B_c ) )^T
                bl1_swap_ints( ldc, incc );

                bl1_swap_ints( m, n );

                gemm_needs_axpyt = TRUE;
            }
            else // if ( bl1_is_row_storage( b_rs, b_cs ) )
            {
                // requested operation: C_r += tr( A_c ) * tr( B_r )
                // effective operation: C_c += tr( B_c ) * tr( A_c )^T
                bl1_swap_ints( ldc, incc );
                bl1_swap_ints( ldb, incb );

                bl1_toggle_trans( transa );

                bl1_swap_ints( m, n );
                bl1_swap_ints( m_gemm, n_gemm );
                bl1_zswap_pointers( a, b );
                bl1_swap_ints( a_was_copied, b_was_copied );
                bl1_swap_ints( lda, ldb );
                bl1_swap_ints( inca, incb );
                bl1_swap_trans( transa, transb );
            }
        }
        else // if ( bl1_is_row_storage( a_rs, a_cs ) )
        {
            if ( bl1_is_col_storage( b_rs, b_cs ) )
            {
                // requested operation: C_r += tr( A_r )   * tr( B_c )
                // effective operation: C_c += tr( B_c )^T * tr( A_c )
                bl1_swap_ints( ldc, incc );
                bl1_swap_ints( lda, inca );

                bl1_toggle_trans( transb );

                bl1_swap_ints( m, n );
                bl1_swap_ints( m_gemm, n_gemm );
                bl1_zswap_pointers( a, b );
                bl1_swap_ints( a_was_copied, b_was_copied );
                bl1_swap_ints( lda, ldb );
                bl1_swap_ints( inca, incb );
                bl1_swap_trans( transa, transb );
            }
            else // if ( bl1_is_row_storage( b_rs, b_cs ) )
            {
                // requested operation: C_r += tr( A_r ) * tr( B_r )
                // effective operation: C_c += tr( B_c ) * tr( A_c )
                bl1_swap_ints( lda, inca );
                bl1_swap_ints( ldb, incb );
                bl1_swap_ints( ldc, incc );

                bl1_swap_ints( m, n );
                bl1_swap_ints( m_gemm, n_gemm );
                bl1_zswap_pointers( a, b );
                bl1_swap_ints( a_was_copied, b_was_copied );
                bl1_swap_ints( lda, ldb );
                bl1_swap_ints( inca, incb );
                bl1_swap_trans( transa, transb );
            }
        }
    }

    // We need a temporary matrix for the case where A is conjugated.
    a_conj    = a;
    lda_conj  = lda;
    inca_conj = inca;

    // If transa indicates conjugate-no-transpose and A was not already
    // copied, then copy and conjugate it to a temporary matrix. Otherwise,
    // if transa indicates conjugate-no-transpose and A was already copied,
    // just conjugate it.
    if ( bl1_is_conjnotrans( transa ) && !a_was_copied )
    {
        a_conj    = bl1_zallocm( m_gemm, k );
        lda_conj  = m_gemm;
        inca_conj = 1;

        bl1_zcopymt( BLIS1_CONJ_NO_TRANSPOSE,
                     m_gemm,
                     k,
                     a,      inca,      lda,
                     a_conj, inca_conj, lda_conj );
    }
    else if ( bl1_is_conjnotrans( transa ) && a_was_copied )
    {
        bl1_zconjm( m_gemm,
                    k,
                    a_conj, inca_conj, lda_conj );
    }

    // We need a temporary matrix for the case where B is conjugated.
    b_conj    = b;
    ldb_conj  = ldb;
    incb_conj = incb;

    // If transb indicates conjugate-no-transpose and B was not already
    // copied, then copy and conjugate it to a temporary matrix. Otherwise,
    // if transb indicates conjugate-no-transpose and B was already copied,
    // just conjugate it.
    if ( bl1_is_conjnotrans( transb ) && !b_was_copied )
    {
        b_conj    = bl1_zallocm( k, n_gemm );
        ldb_conj  = k;
        incb_conj = 1;

        bl1_zcopymt( BLIS1_CONJ_NO_TRANSPOSE,
                     k,
                     n_gemm,
                     b,      incb,      ldb,
                     b_conj, incb_conj, ldb_conj );
    }
    else if ( bl1_is_conjnotrans( transb ) && b_was_copied )
    {
        bl1_zconjm( k,
                    n_gemm,
                    b_conj, incb_conj, ldb_conj );
    }

    // There are two cases where we need to perform the gemm and then axpy
    // the result into C with a transposition. We handle those cases here.
    if ( gemm_needs_axpyt )
    {
        // We need a temporary matrix for holding C^T. Notice that m and n
        // represent the dimensions of C, while m_gemm and n_gemm are the
        // dimensions of the actual product op(A)*op(B), which may be n-by-m
        // since the operands may have been swapped.
        c_trans    = bl1_zallocm( m_gemm, n_gemm );
        ldc_trans  = m_gemm;
        incc_trans = 1;

        // Compute tr( A ) * tr( B ), where A and B may have been swapped
        // to reference the other, and store the result in C_trans.
        bl1_zgemm_blas( transa,
                        transb,
                        m_gemm,
                        n_gemm,
                        k,
                        alpha,
                        a_conj,  lda_conj,
                        b_conj,  ldb_conj,
                        &zero,
                        c_trans, ldc_trans );

        // Scale C by beta.
        bl1_zscalm( BLIS1_NO_CONJUGATE,
                    m,
                    n,
                    beta,
                    c, incc, ldc );
        
        // And finally, accumulate the matrix product in C_trans into C
        // with a transpose.
        bl1_zaxpymt( BLIS1_TRANSPOSE,
                     m,
                     n,
                     &one,
                     c_trans, incc_trans, ldc_trans,
                     c,       incc,       ldc );

        // Free the temporary matrix for C.
        bl1_zfree( c_trans );
    }
    else // no extra axpyt step needed
    {
        bl1_zgemm_blas( transa,
                        transb,
                        m_gemm,
                        n_gemm,
                        k,
                        alpha,
                        a_conj, lda_conj,
                        b_conj, ldb_conj,
                        beta,
                        c,      ldc );
    }

    if ( bl1_is_conjnotrans( transa ) && !a_was_copied )
        bl1_zfree( a_conj );

    if ( bl1_is_conjnotrans( transb ) && !b_was_copied )
        bl1_zfree( b_conj );

    // Free any temporary contiguous matrices, copying the result back to
    // the original matrix.
    bl1_zfree_contigm( a_save,    a_rs_save, a_cs_save,
                       &a_unswap, &a_rs,     &a_cs );

    bl1_zfree_contigm( b_save,    b_rs_save, b_cs_save,
                       &b_unswap, &b_rs,     &b_cs );

    bl1_zfree_saved_contigm( m_save,
                             n_save,
                             c_save, c_rs_save, c_cs_save,
                             &c,     &c_rs,     &c_cs );
}
void bl1_zgemm_blas ( trans1_t  transa,
trans1_t  transb,
int  m,
int  n,
int  k,
dcomplex alpha,
dcomplex a,
int  lda,
dcomplex b,
int  ldb,
dcomplex beta,
dcomplex c,
int  ldc 
)

References bl1_param_map_to_netlib_trans(), cblas_zgemm(), CblasColMajor, and F77_zgemm().

Referenced by bl1_zgemm().

{
#ifdef BLIS1_ENABLE_CBLAS_INTERFACES
    enum CBLAS_ORDER     cblas_order = CblasColMajor;
    enum CBLAS_TRANSPOSE cblas_transa;
    enum CBLAS_TRANSPOSE cblas_transb;

    bl1_param_map_to_netlib_trans( transa, &cblas_transa );
    bl1_param_map_to_netlib_trans( transb, &cblas_transb );

    cblas_zgemm( cblas_order,
                 cblas_transa,
                 cblas_transb,
                 m,
                 n,
                 k,
                 alpha,
                 a, lda,
                 b, ldb,
                 beta,
                 c, ldc );
#else
    char blas_transa;
    char blas_transb;

    bl1_param_map_to_netlib_trans( transa, &blas_transa );
    bl1_param_map_to_netlib_trans( transb, &blas_transb );

    F77_zgemm( &blas_transa,
               &blas_transb,
               &m,
               &n,
               &k,
               alpha,
               a, &lda,
               b, &ldb,
               beta,
               c, &ldc );
#endif
}