• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
      • Aig
      • Satlink
      • Truth
      • Ubdds
      • Bdd
      • Faig
      • Bed
      • 4v
        • 4v-sexprs
          • 4v-sexpr-vars
          • 4v-sexpr-eval
          • 4v-sexpr-to-faig
            • 4v-and-faig-operations-commute
            • 4v-sexpr-to-faig-plain
            • 4v-sexpr-to-faig-opt
            • Sfaig
            • 4v->faig-const
            • 4v-sexpr-to-faig-list
            • Faig-const-fix
            • Faig-const->4v
              • Faig-const-alist->4v-alist
              • Faig-const-list->4v-list
            • 4v-sexpr-to-faig-alist
            • Faig-const-<=
            • Faig-const-p
          • 4v-sexpr-restrict-with-rw
          • 4vs-constructors
          • 4v-sexpr-compose-with-rw
          • 4v-sexpr-restrict
          • 4v-sexpr-alist-extract
          • 4v-sexpr-compose
          • 4v-nsexpr-p
          • 4v-sexpr-purebool-p
          • 4v-sexpr-<=
          • Sfaig
          • Sexpr-equivs
          • 3v-syntax-sexprp
          • Sexpr-rewriting
          • 4v-sexpr-ind
          • 4v-alist-extract
        • 4v-monotonicity
        • 4v-operations
        • Why-4v-logic
        • 4v-<=
        • 4vp
        • 4vcases
        • 4v-fix
        • 4v-lookup
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Math
    • Testing-utilities
  • 4v-sexpr-to-faig

Faig-const->4v

Convert a faig-const-p into a 4vp.

Signature
(faig-const->4v x) → *

Definitions and Theorems

Function: faig-const->4v

(defun faig-const->4v (x)
  (declare (xargs :guard t))
  (let ((__function__ 'faig-const->4v))
    (declare (ignorable __function__))
    (cond ((equal x (faig-t)) (4vt))
          ((equal x (faig-f)) (4vf))
          ((equal x (faig-z)) (4vz))
          (t (4vx)))))

Theorem: faig-const-equiv-implies-equal-faig-const->4v-1

(defthm faig-const-equiv-implies-equal-faig-const->4v-1
  (implies (faig-const-equiv x x-equiv)
           (equal (faig-const->4v x)
                  (faig-const->4v x-equiv)))
  :rule-classes (:congruence))

Theorem: 4vp-of-faig-const->4v

(defthm 4vp-of-faig-const->4v
  (4vp (faig-const->4v x)))

Subtopics

Faig-const-alist->4v-alist
Faig-const-list->4v-list