(fraig-output-map-fix x) is a usual ACL2::fty list fixing function.
(fraig-output-map-fix x) → fty::newx
In the logic, we apply fraig-output-map-entry-fix to each member of the x. In the execution, none of that is actually necessary and this is just an inlined identity function.
Function:
(defun fraig-output-map-fix$inline (x) (declare (xargs :guard (fraig-output-map-p x))) (let ((__function__ 'fraig-output-map-fix)) (declare (ignorable __function__)) (mbe :logic (if (atom x) nil (cons (fraig-output-map-entry-fix (car x)) (fraig-output-map-fix (cdr x)))) :exec x)))
Theorem:
(defthm fraig-output-map-p-of-fraig-output-map-fix (b* ((fty::newx (fraig-output-map-fix$inline x))) (fraig-output-map-p fty::newx)) :rule-classes :rewrite)
Theorem:
(defthm fraig-output-map-fix-when-fraig-output-map-p (implies (fraig-output-map-p x) (equal (fraig-output-map-fix x) x)))
Function:
(defun fraig-output-map-equiv$inline (x acl2::y) (declare (xargs :guard (and (fraig-output-map-p x) (fraig-output-map-p acl2::y)))) (equal (fraig-output-map-fix x) (fraig-output-map-fix acl2::y)))
Theorem:
(defthm fraig-output-map-equiv-is-an-equivalence (and (booleanp (fraig-output-map-equiv x y)) (fraig-output-map-equiv x x) (implies (fraig-output-map-equiv x y) (fraig-output-map-equiv y x)) (implies (and (fraig-output-map-equiv x y) (fraig-output-map-equiv y z)) (fraig-output-map-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm fraig-output-map-equiv-implies-equal-fraig-output-map-fix-1 (implies (fraig-output-map-equiv x x-equiv) (equal (fraig-output-map-fix x) (fraig-output-map-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm fraig-output-map-fix-under-fraig-output-map-equiv (fraig-output-map-equiv (fraig-output-map-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-fraig-output-map-fix-1-forward-to-fraig-output-map-equiv (implies (equal (fraig-output-map-fix x) acl2::y) (fraig-output-map-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-fraig-output-map-fix-2-forward-to-fraig-output-map-equiv (implies (equal x (fraig-output-map-fix acl2::y)) (fraig-output-map-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm fraig-output-map-equiv-of-fraig-output-map-fix-1-forward (implies (fraig-output-map-equiv (fraig-output-map-fix x) acl2::y) (fraig-output-map-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm fraig-output-map-equiv-of-fraig-output-map-fix-2-forward (implies (fraig-output-map-equiv x (fraig-output-map-fix acl2::y)) (fraig-output-map-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm car-of-fraig-output-map-fix-x-under-fraig-output-map-entry-equiv (fraig-output-map-entry-equiv (car (fraig-output-map-fix x)) (car x)))
Theorem:
(defthm car-fraig-output-map-equiv-congruence-on-x-under-fraig-output-map-entry-equiv (implies (fraig-output-map-equiv x x-equiv) (fraig-output-map-entry-equiv (car x) (car x-equiv))) :rule-classes :congruence)
Theorem:
(defthm cdr-of-fraig-output-map-fix-x-under-fraig-output-map-equiv (fraig-output-map-equiv (cdr (fraig-output-map-fix x)) (cdr x)))
Theorem:
(defthm cdr-fraig-output-map-equiv-congruence-on-x-under-fraig-output-map-equiv (implies (fraig-output-map-equiv x x-equiv) (fraig-output-map-equiv (cdr x) (cdr x-equiv))) :rule-classes :congruence)
Theorem:
(defthm cons-of-fraig-output-map-entry-fix-x-under-fraig-output-map-equiv (fraig-output-map-equiv (cons (fraig-output-map-entry-fix x) acl2::y) (cons x acl2::y)))
Theorem:
(defthm cons-fraig-output-map-entry-equiv-congruence-on-x-under-fraig-output-map-equiv (implies (fraig-output-map-entry-equiv x x-equiv) (fraig-output-map-equiv (cons x acl2::y) (cons x-equiv acl2::y))) :rule-classes :congruence)
Theorem:
(defthm cons-of-fraig-output-map-fix-y-under-fraig-output-map-equiv (fraig-output-map-equiv (cons x (fraig-output-map-fix acl2::y)) (cons x acl2::y)))
Theorem:
(defthm cons-fraig-output-map-equiv-congruence-on-y-under-fraig-output-map-equiv (implies (fraig-output-map-equiv acl2::y y-equiv) (fraig-output-map-equiv (cons x acl2::y) (cons x y-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-fraig-output-map-fix (equal (consp (fraig-output-map-fix x)) (consp x)))
Theorem:
(defthm fraig-output-map-fix-under-iff (iff (fraig-output-map-fix x) (consp x)))
Theorem:
(defthm fraig-output-map-fix-of-cons (equal (fraig-output-map-fix (cons a x)) (cons (fraig-output-map-entry-fix a) (fraig-output-map-fix x))))
Theorem:
(defthm len-of-fraig-output-map-fix (equal (len (fraig-output-map-fix x)) (len x)))
Theorem:
(defthm fraig-output-map-fix-of-append (equal (fraig-output-map-fix (append std::a std::b)) (append (fraig-output-map-fix std::a) (fraig-output-map-fix std::b))))
Theorem:
(defthm fraig-output-map-fix-of-repeat (equal (fraig-output-map-fix (acl2::repeat acl2::n x)) (acl2::repeat acl2::n (fraig-output-map-entry-fix x))))
Theorem:
(defthm list-equiv-refines-fraig-output-map-equiv (implies (list-equiv x acl2::y) (fraig-output-map-equiv x acl2::y)) :rule-classes :refinement)
Theorem:
(defthm nth-of-fraig-output-map-fix (equal (nth acl2::n (fraig-output-map-fix x)) (if (< (nfix acl2::n) (len x)) (fraig-output-map-entry-fix (nth acl2::n x)) nil)))
Theorem:
(defthm fraig-output-map-equiv-implies-fraig-output-map-equiv-append-1 (implies (fraig-output-map-equiv x fty::x-equiv) (fraig-output-map-equiv (append x acl2::y) (append fty::x-equiv acl2::y))) :rule-classes (:congruence))
Theorem:
(defthm fraig-output-map-equiv-implies-fraig-output-map-equiv-append-2 (implies (fraig-output-map-equiv acl2::y fty::y-equiv) (fraig-output-map-equiv (append x acl2::y) (append x fty::y-equiv))) :rule-classes (:congruence))
Theorem:
(defthm fraig-output-map-equiv-implies-fraig-output-map-equiv-nthcdr-2 (implies (fraig-output-map-equiv acl2::l l-equiv) (fraig-output-map-equiv (nthcdr acl2::n acl2::l) (nthcdr acl2::n l-equiv))) :rule-classes (:congruence))
Theorem:
(defthm fraig-output-map-equiv-implies-fraig-output-map-equiv-take-2 (implies (fraig-output-map-equiv acl2::l l-equiv) (fraig-output-map-equiv (take acl2::n acl2::l) (take acl2::n l-equiv))) :rule-classes (:congruence))