Fixing function for programdef structures.
(programdef-fix x) → new-x
Function:
(defun programdef-fix$inline (x) (declare (xargs :guard (programdefp x))) (let ((__function__ 'programdef-fix)) (declare (ignorable __function__)) (mbe :logic (case (programdef-kind x) (:mapping (b* ((get (mapping-fix (std::da-nth 0 (cdr x))))) (cons :mapping (list get)))) (:interface (b* ((get (interface-type-fix (std::da-nth 0 (cdr x))))) (cons :interface (list get)))) (:record (b* ((get (record-type-fix (std::da-nth 0 (cdr x))))) (cons :record (list get)))) (:closure (b* ((get (closure-fix (std::da-nth 0 (cdr x))))) (cons :closure (list get)))) (:function (b* ((get (function-fix (std::da-nth 0 (cdr x))))) (cons :function (list get))))) :exec x)))
Theorem:
(defthm programdefp-of-programdef-fix (b* ((new-x (programdef-fix$inline x))) (programdefp new-x)) :rule-classes :rewrite)
Theorem:
(defthm programdef-fix-when-programdefp (implies (programdefp x) (equal (programdef-fix x) x)))
Function:
(defun programdef-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (programdefp acl2::x) (programdefp acl2::y)))) (equal (programdef-fix acl2::x) (programdef-fix acl2::y)))
Theorem:
(defthm programdef-equiv-is-an-equivalence (and (booleanp (programdef-equiv x y)) (programdef-equiv x x) (implies (programdef-equiv x y) (programdef-equiv y x)) (implies (and (programdef-equiv x y) (programdef-equiv y z)) (programdef-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm programdef-equiv-implies-equal-programdef-fix-1 (implies (programdef-equiv acl2::x x-equiv) (equal (programdef-fix acl2::x) (programdef-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm programdef-fix-under-programdef-equiv (programdef-equiv (programdef-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-programdef-fix-1-forward-to-programdef-equiv (implies (equal (programdef-fix acl2::x) acl2::y) (programdef-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-programdef-fix-2-forward-to-programdef-equiv (implies (equal acl2::x (programdef-fix acl2::y)) (programdef-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm programdef-equiv-of-programdef-fix-1-forward (implies (programdef-equiv (programdef-fix acl2::x) acl2::y) (programdef-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm programdef-equiv-of-programdef-fix-2-forward (implies (programdef-equiv acl2::x (programdef-fix acl2::y)) (programdef-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm programdef-kind$inline-of-programdef-fix-x (equal (programdef-kind$inline (programdef-fix x)) (programdef-kind$inline x)))
Theorem:
(defthm programdef-kind$inline-programdef-equiv-congruence-on-x (implies (programdef-equiv x x-equiv) (equal (programdef-kind$inline x) (programdef-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-programdef-fix (consp (programdef-fix x)) :rule-classes :type-prescription)