• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Community
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Math
      • 100-theorems
      • Arithmetic
      • Bit-vectors
        • Sparseint
          • Sparseint-impl
          • Sparseint-p
          • Sparseint-binary-bittest
          • Sparseint-concatenate
          • Sparseint-binary-bitop
          • Sparseint-bitite
          • Sparseint-fix
          • Sparseint$-binary-minus
            • Sparseint-trailing-1-count-from
            • Sparseint-trailing-0-count-from
            • Sparseint-equal
            • Sparseint-test-bitorc2
            • Sparseint-test-bitorc1
            • Sparseint-test-bitnand
            • Sparseint-test-bitandc2
            • Sparseint-test-bitandc1
            • Sparseint-test-bitand
            • Sparseint-rightshift
            • Sparseint-bitcount-from
            • Sparseint-test-bitxor
            • Sparseint-test-bitor
            • Sparseint-test-bitnor
            • Sparseint-test-biteqv
            • Sparseint-compare
            • Sparseint-binary-minus
            • Sparseint-sign-ext
            • Sparseint-plus
            • Sparseint-bitandc2
            • Sparseint-bitandc1
            • Sparseint-bitand
            • Sparseint$-leaf-bitlimit
            • Sparseint-bitxor
            • Sparseint-bitorc2
            • Sparseint-bitorc1
            • Sparseint-bitor
            • Sparseint-bitnor
            • Sparseint-bitnand
            • Sparseint-biteqv
            • Sparseint-ash
            • Sparseint-<
            • Sparseint-bit
            • Sparseint-trailing-1-count
            • Sparseint-trailing-0-count
            • Sparseint-unary-minus
            • Sparseint-length
            • Sparseint-bitnot
            • Sparseint-bitcount
            • Int-to-sparseint
            • Sparseint-val
          • Bitops
          • Bv
          • Ihs
          • Rtl
        • Algebra
      • Testing-utilities
    • Sparseint

    Sparseint$-binary-minus

    Subtract one sparseint from another.

    Signature
    (sparseint$-binary-minus x y) → minus
    Arguments
    x — Guard (sparseint$-p x).
    y — Guard (sparseint$-p y).
    Returns
    minus — Type (sparseint$-p minus).

    Definitions and Theorems

    Function: sparseint$-binary-minus

    (defun sparseint$-binary-minus (x y)
      (declare (xargs :guard (and (sparseint$-p x)
                                  (sparseint$-p y))))
      (declare (xargs :guard (and (sparseint$-height-correctp x)
                                  (sparseint$-height-correctp y))))
      (let ((__function__ 'sparseint$-binary-minus))
        (declare (ignorable __function__))
        (b* ((x.height (sparseint$-height x))
             (y.height (sparseint$-height y))
             (y.neg (sparseint$-bitnot y))
             ((mv minus ?height)
              (sparseint$-plus-offset x x.height 0 y.neg y.height 1)))
          minus)))

    Theorem: sparseint$-p-of-sparseint$-binary-minus

    (defthm sparseint$-p-of-sparseint$-binary-minus
      (b* ((minus (sparseint$-binary-minus x y)))
        (sparseint$-p minus))
      :rule-classes :rewrite)

    Theorem: sparseint$-height-correctp-of-sparseint$-binary-minus

    (defthm sparseint$-height-correctp-of-sparseint$-binary-minus
      (b* ((?minus (sparseint$-binary-minus x y)))
        (implies (and (sparseint$-height-correctp x)
                      (sparseint$-height-correctp y))
                 (sparseint$-height-correctp minus))))

    Theorem: sparseint$-val-of-sparseint$-binary-minus

    (defthm sparseint$-val-of-sparseint$-binary-minus
      (b* ((?minus (sparseint$-binary-minus x y)))
        (equal (sparseint$-val minus)
               (- (sparseint$-val x)
                  (sparseint$-val y)))))

    Theorem: sparseint$-binary-minus-of-sparseint$-fix-x

    (defthm sparseint$-binary-minus-of-sparseint$-fix-x
      (equal (sparseint$-binary-minus (sparseint$-fix x)
                                      y)
             (sparseint$-binary-minus x y)))

    Theorem: sparseint$-binary-minus-sparseint$-equiv-congruence-on-x

    (defthm sparseint$-binary-minus-sparseint$-equiv-congruence-on-x
      (implies (sparseint$-equiv x x-equiv)
               (equal (sparseint$-binary-minus x y)
                      (sparseint$-binary-minus x-equiv y)))
      :rule-classes :congruence)

    Theorem: sparseint$-binary-minus-of-sparseint$-fix-y

    (defthm sparseint$-binary-minus-of-sparseint$-fix-y
      (equal (sparseint$-binary-minus x (sparseint$-fix y))
             (sparseint$-binary-minus x y)))

    Theorem: sparseint$-binary-minus-sparseint$-equiv-congruence-on-y

    (defthm sparseint$-binary-minus-sparseint$-equiv-congruence-on-y
      (implies (sparseint$-equiv y y-equiv)
               (equal (sparseint$-binary-minus x y)
                      (sparseint$-binary-minus x y-equiv)))
      :rule-classes :congruence)