Fixing function for group-literal structures.
(group-literal-fix lit) → new-x
Function:
(defun group-literal-fix$inline (lit) (declare (xargs :guard (group-literalp lit))) (let ((__function__ 'group-literal-fix)) (declare (ignorable __function__)) (mbe :logic (case (group-literal-kind lit) (:affine (b* ((x (coordinate-fix (std::da-nth 0 (cdr lit)))) (y (coordinate-fix (std::da-nth 1 (cdr lit))))) (cons :affine (list x y)))) (:product (b* ((factor (nfix (std::da-nth 0 (cdr lit))))) (cons :product (list factor))))) :exec lit)))
Theorem:
(defthm group-literalp-of-group-literal-fix (b* ((new-x (group-literal-fix$inline lit))) (group-literalp new-x)) :rule-classes :rewrite)
Theorem:
(defthm group-literal-fix-when-group-literalp (implies (group-literalp lit) (equal (group-literal-fix lit) lit)))
Function:
(defun group-literal-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (group-literalp acl2::x) (group-literalp acl2::y)))) (equal (group-literal-fix acl2::x) (group-literal-fix acl2::y)))
Theorem:
(defthm group-literal-equiv-is-an-equivalence (and (booleanp (group-literal-equiv x y)) (group-literal-equiv x x) (implies (group-literal-equiv x y) (group-literal-equiv y x)) (implies (and (group-literal-equiv x y) (group-literal-equiv y z)) (group-literal-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm group-literal-equiv-implies-equal-group-literal-fix-1 (implies (group-literal-equiv acl2::x x-equiv) (equal (group-literal-fix acl2::x) (group-literal-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm group-literal-fix-under-group-literal-equiv (group-literal-equiv (group-literal-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-group-literal-fix-1-forward-to-group-literal-equiv (implies (equal (group-literal-fix acl2::x) acl2::y) (group-literal-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-group-literal-fix-2-forward-to-group-literal-equiv (implies (equal acl2::x (group-literal-fix acl2::y)) (group-literal-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm group-literal-equiv-of-group-literal-fix-1-forward (implies (group-literal-equiv (group-literal-fix acl2::x) acl2::y) (group-literal-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm group-literal-equiv-of-group-literal-fix-2-forward (implies (group-literal-equiv acl2::x (group-literal-fix acl2::y)) (group-literal-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm group-literal-kind$inline-of-group-literal-fix-lit (equal (group-literal-kind$inline (group-literal-fix lit)) (group-literal-kind$inline lit)))
Theorem:
(defthm group-literal-kind$inline-group-literal-equiv-congruence-on-lit (implies (group-literal-equiv lit lit-equiv) (equal (group-literal-kind$inline lit) (group-literal-kind$inline lit-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-group-literal-fix (consp (group-literal-fix lit)) :rule-classes :type-prescription)