• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
        • Representation
        • Aignet-copy-init
        • Aignet-simplify-with-tracking
        • Aignet-simplify-marked-with-tracking
        • Aignet-cnf
        • Aignet-simplify-marked
        • Aignet-complete-copy
        • Aignet-transforms
          • Aignet-output-ranges
          • Aignet-comb-transforms
            • Fraig
            • Parametrize
            • Observability-fix
              • Observability-fix-hyps/concls
                • Observability-fix-input-copies
                • Observability-fixed-inputs
                • Observability-fixed-regs
                • Observability-fix-hyp/concl
                • Observability-fix-lit
                • M-assum-n-output-observability
                • Observability-fix-outs
                • Observability-fix-nxsts
                • Observability-split-supergate-aux
                • Observability-fix-core
                • Observability-split-supergate
                • Aignet-build-wide-and
                • Observability-config
                • Observability-fix!
                • Observability-size-check
                • M-assum-n-output-observability-config
              • Constprop
              • Apply-m-assumption-n-output-output-transform-default
              • Balance
              • Apply-n-output-comb-transform-default
              • Apply-comb-transform-default
              • Obs-constprop
              • Rewrite
              • Comb-transform
              • Abc-comb-simplify
              • Prune
              • Rewrite!
              • M-assumption-n-output-comb-transform->name
              • N-output-comb-transform->name
              • Comb-transform->name
              • N-output-comb-transformlist
              • M-assumption-n-output-comb-transformlist
              • Comb-transformlist
              • Apply-comb-transform
            • Aignet-m-assumption-n-output-transforms
            • Aignet-n-output-comb-transforms
          • Aignet-eval
          • Semantics
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Community
      • Proof-automation
      • ACL2
      • Macro-libraries
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Observability-fix

    Observability-fix-hyps/concls

    Signature
    (observability-fix-hyps/concls hyps concls aignet 
                                   copy gatesimp strash aignet2 state) 
     
      → 
    (mv hyp-copy new-hyps new-concls new-copy 
        new-strash new-aignet2 new-state) 
    
    Arguments
    hyps — Guard (lit-listp hyps).
    concls — Guard (lit-listp concls).
    gatesimp — Guard (gatesimp-p gatesimp).
    Returns
    hyp-copy — Type (litp hyp-copy).
    new-hyps — Type (lit-listp new-hyps).
    new-concls — Type (lit-listp new-concls).

    Definitions and Theorems

    Function: observability-fix-hyps/concls

    (defun observability-fix-hyps/concls
           (hyps concls aignet
                 copy gatesimp strash aignet2 state)
     (declare (xargs :stobjs (aignet copy strash aignet2 state)))
     (declare (xargs :guard (and (lit-listp hyps)
                                 (lit-listp concls)
                                 (gatesimp-p gatesimp))))
     (declare (xargs :guard (and (<= (num-fanins aignet)
                                     (lits-length copy))
                                 (aignet-copies-in-bounds copy aignet2)
                                 (aignet-lit-listp hyps aignet)
                                 (aignet-lit-listp concls aignet)
                                 (<= (num-ins aignet) (num-ins aignet2))
                                 (<= (num-regs aignet)
                                     (num-regs aignet2)))))
     (let ((__function__ 'observability-fix-hyps/concls))
      (declare (ignorable __function__))
      (b*
       (((mv copy strash aignet2)
         (b*
           (((local-stobjs mark)
             (mv mark copy strash aignet2))
            (mark (resize-bits (num-fanins aignet) mark))
            ((mv mark copy strash aignet2)
             (aignet-copy-dfs-list hyps aignet
                                   mark copy strash gatesimp aignet2)))
           (mv mark copy strash aignet2)))
        (hyp-copies (lit-list-copies hyps copy))
        ((mv hyp-copy strash aignet2)
         (aignet-hash-and-supergate hyp-copies gatesimp strash aignet2))
        ((mv ?status copy strash aignet2 state)
         (observability-fix-input-copies
              hyp-copy
              aignet copy strash aignet2 state))
        ((when (eq status :unsat))
         (mv 0 hyp-copies
             (make-list (len concls)
                        :initial-element 0)
             copy strash aignet2 state))
        ((mv copy strash aignet2)
         (b* (((local-stobjs mark)
               (mv mark copy strash aignet2))
              (mark (resize-bits (num-fanins aignet) mark)))
           (aignet-copy-dfs-list concls aignet
                                 mark copy strash gatesimp aignet2)))
        (concl-copies (lit-list-copies concls copy)))
       (mv hyp-copy hyp-copies concl-copies
           copy strash aignet2 state))))

    Theorem: litp-of-observability-fix-hyps/concls.hyp-copy

    (defthm litp-of-observability-fix-hyps/concls.hyp-copy
      (b* (((mv ?hyp-copy
                ?new-hyps ?new-concls ?new-copy
                ?new-strash ?new-aignet2 ?new-state)
            (observability-fix-hyps/concls
                 hyps concls aignet
                 copy gatesimp strash aignet2 state)))
        (litp hyp-copy))
      :rule-classes :rewrite)

    Theorem: lit-listp-of-observability-fix-hyps/concls.new-hyps

    (defthm lit-listp-of-observability-fix-hyps/concls.new-hyps
      (b* (((mv ?hyp-copy
                ?new-hyps ?new-concls ?new-copy
                ?new-strash ?new-aignet2 ?new-state)
            (observability-fix-hyps/concls
                 hyps concls aignet
                 copy gatesimp strash aignet2 state)))
        (lit-listp new-hyps))
      :rule-classes :rewrite)

    Theorem: lit-listp-of-observability-fix-hyps/concls.new-concls

    (defthm lit-listp-of-observability-fix-hyps/concls.new-concls
      (b* (((mv ?hyp-copy
                ?new-hyps ?new-concls ?new-copy
                ?new-strash ?new-aignet2 ?new-state)
            (observability-fix-hyps/concls
                 hyps concls aignet
                 copy gatesimp strash aignet2 state)))
        (lit-listp new-concls))
      :rule-classes :rewrite)

    Theorem: aignet-extension-of-observability-fix-hyps/concls

    (defthm aignet-extension-of-observability-fix-hyps/concls
      (b* (((mv ?hyp-copy
                ?new-hyps ?new-concls ?new-copy
                ?new-strash ?new-aignet2 ?new-state)
            (observability-fix-hyps/concls
                 hyps concls aignet
                 copy gatesimp strash aignet2 state)))
        (aignet-extension-p new-aignet2 aignet2)))

    Theorem: stype-counts-of-observability-fix-hyps/concls

    (defthm stype-counts-of-observability-fix-hyps/concls
      (b* (((mv ?hyp-copy
                ?new-hyps ?new-concls ?new-copy
                ?new-strash ?new-aignet2 ?new-state)
            (observability-fix-hyps/concls
                 hyps concls aignet
                 copy gatesimp strash aignet2 state)))
        (implies (and (not (equal (stype-fix stype) (and-stype)))
                      (not (equal (stype-fix stype) (xor-stype))))
                 (equal (stype-count stype new-aignet2)
                        (stype-count stype aignet2)))))

    Theorem: copy-length-of-observability-fix-hyps/concls

    (defthm copy-length-of-observability-fix-hyps/concls
      (b* (((mv ?hyp-copy
                ?new-hyps ?new-concls ?new-copy
                ?new-strash ?new-aignet2 ?new-state)
            (observability-fix-hyps/concls
                 hyps concls aignet
                 copy gatesimp strash aignet2 state)))
        (implies (and (<= (num-fanins aignet) (len copy))
                      (aignet-lit-listp hyps aignet)
                      (aignet-lit-listp concls aignet))
                 (equal (len new-copy) (len copy)))))

    Theorem: copies-in-bounds-of-observability-fix-hyps/concls

    (defthm copies-in-bounds-of-observability-fix-hyps/concls
      (b* (((mv ?hyp-copy
                ?new-hyps ?new-concls ?new-copy
                ?new-strash ?new-aignet2 ?new-state)
            (observability-fix-hyps/concls
                 hyps concls aignet
                 copy gatesimp strash aignet2 state)))
        (implies (and (aignet-copies-in-bounds copy aignet2)
                      (aignet-lit-listp hyps aignet)
                      (aignet-lit-listp concls aignet)
                      (<= (num-ins aignet) (num-ins aignet2))
                      (<= (num-regs aignet)
                          (num-regs aignet2)))
                 (and (aignet-copies-in-bounds new-copy new-aignet2)
                      (aignet-litp hyp-copy new-aignet2)
                      (aignet-lit-listp new-hyps new-aignet2)
                      (aignet-lit-listp new-concls new-aignet2)))))

    Theorem: dfs-copy-onto-invar-of-empty-mark

    (defthm dfs-copy-onto-invar-of-empty-mark
      (dfs-copy-onto-invar aignet (resize-list nil n 0)
                           copy aignet2))

    Theorem: new-concls-len-of-observability-fix-hyps/concls

    (defthm new-concls-len-of-observability-fix-hyps/concls
      (b* (((mv ?hyp-copy
                ?new-hyps ?new-concls ?new-copy
                ?new-strash ?new-aignet2 ?new-state)
            (observability-fix-hyps/concls
                 hyps concls aignet
                 copy gatesimp strash aignet2 state)))
        (equal (len new-concls) (len concls))))

    Theorem: new-hyps-len-of-observability-fix-hyps/concls

    (defthm new-hyps-len-of-observability-fix-hyps/concls
      (b* (((mv ?hyp-copy
                ?new-hyps ?new-concls ?new-copy
                ?new-strash ?new-aignet2 ?new-state)
            (observability-fix-hyps/concls
                 hyps concls aignet
                 copy gatesimp strash aignet2 state)))
        (equal (len new-hyps) (len hyps))))

    Theorem: new-concls-consp-of-observability-fix-hyps/concls

    (defthm new-concls-consp-of-observability-fix-hyps/concls
      (b* (((mv ?hyp-copy
                ?new-hyps ?new-concls ?new-copy
                ?new-strash ?new-aignet2 ?new-state)
            (observability-fix-hyps/concls
                 hyps concls aignet
                 copy gatesimp strash aignet2 state)))
        (equal (consp new-concls)
               (consp concls))))

    Theorem: new-hyps-consp-of-observability-fix-hyps/concls

    (defthm new-hyps-consp-of-observability-fix-hyps/concls
      (b* (((mv ?hyp-copy
                ?new-hyps ?new-concls ?new-copy
                ?new-strash ?new-aignet2 ?new-state)
            (observability-fix-hyps/concls
                 hyps concls aignet
                 copy gatesimp strash aignet2 state)))
        (equal (consp new-hyps) (consp hyps))))

    Theorem: hyp-eval-of-observability-fix-hyps/concls

    (defthm hyp-eval-of-observability-fix-hyps/concls
     (b* (((mv ?hyp-copy
               ?new-hyps ?new-concls ?new-copy
               ?new-strash ?new-aignet2 ?new-state)
           (observability-fix-hyps/concls
                hyps concls aignet
                copy gatesimp strash aignet2 state)))
      (implies
       (and (aignet-copies-in-bounds copy aignet2)
            (aignet-lit-listp hyps aignet)
            (<= (num-ins aignet) (num-ins aignet2))
            (<= (num-regs aignet)
                (num-regs aignet2)))
       (and
        (equal
           (lit-eval hyp-copy invals regvals new-aignet2)
           (aignet-eval-conjunction
                hyps
                (input-copy-values 0 invals regvals aignet copy aignet2)
                (reg-copy-values 0 invals regvals aignet copy aignet2)
                aignet))
        (equal
           (lit-eval-list new-hyps invals regvals new-aignet2)
           (lit-eval-list
                hyps
                (input-copy-values 0 invals regvals aignet copy aignet2)
                (reg-copy-values 0 invals regvals aignet copy aignet2)
                aignet))))))

    Theorem: eval-of-observability-fix-hyps/concls

    (defthm eval-of-observability-fix-hyps/concls
     (b* (((mv ?hyp-copy
               ?new-hyps ?new-concls ?new-copy
               ?new-strash ?new-aignet2 ?new-state)
           (observability-fix-hyps/concls
                hyps concls aignet
                copy gatesimp strash aignet2 state)))
      (implies
       (and
        (aignet-copies-in-bounds copy aignet2)
        (aignet-lit-listp concls aignet)
        (aignet-lit-listp hyps aignet)
        (<= (num-ins aignet) (num-ins aignet2))
        (<= (num-regs aignet)
            (num-regs aignet2))
        (equal
           (aignet-eval-conjunction
                hyps
                (input-copy-values 0 invals regvals aignet copy aignet2)
                (reg-copy-values 0 invals regvals aignet copy aignet2)
                aignet)
           1))
       (equal
           (lit-eval-list new-concls invals regvals new-aignet2)
           (lit-eval-list
                concls
                (input-copy-values 0 invals regvals aignet copy aignet2)
                (reg-copy-values 0 invals regvals aignet copy aignet2)
                aignet)))))

    Theorem: nth-hyp-eval-of-observability-fix-hyps/concls

    (defthm nth-hyp-eval-of-observability-fix-hyps/concls
     (b* (((mv ?hyp-copy
               ?new-hyps ?new-concls ?new-copy
               ?new-strash ?new-aignet2 ?new-state)
           (observability-fix-hyps/concls
                hyps concls aignet
                copy gatesimp strash aignet2 state)))
      (implies
       (and (aignet-copies-in-bounds copy aignet2)
            (aignet-lit-listp hyps aignet)
            (<= (num-ins aignet) (num-ins aignet2))
            (<= (num-regs aignet)
                (num-regs aignet2)))
       (equal
           (lit-eval (nth n new-hyps)
                     invals regvals new-aignet2)
           (lit-eval
                (nth n hyps)
                (input-copy-values 0 invals regvals aignet copy aignet2)
                (reg-copy-values 0 invals regvals aignet copy aignet2)
                aignet)))))

    Theorem: nth-concl-eval-of-observability-fix-hyps/concls

    (defthm nth-concl-eval-of-observability-fix-hyps/concls
     (b* (((mv ?hyp-copy
               ?new-hyps ?new-concls ?new-copy
               ?new-strash ?new-aignet2 ?new-state)
           (observability-fix-hyps/concls
                hyps concls aignet
                copy gatesimp strash aignet2 state)))
      (implies
       (and
        (aignet-copies-in-bounds copy aignet2)
        (aignet-lit-listp concls aignet)
        (aignet-lit-listp hyps aignet)
        (<= (num-ins aignet) (num-ins aignet2))
        (<= (num-regs aignet)
            (num-regs aignet2))
        (equal
           (aignet-eval-conjunction
                hyps
                (input-copy-values 0 invals regvals aignet copy aignet2)
                (reg-copy-values 0 invals regvals aignet copy aignet2)
                aignet)
           1))
       (equal
           (lit-eval (nth n new-concls)
                     invals regvals new-aignet2)
           (lit-eval
                (nth n concls)
                (input-copy-values 0 invals regvals aignet copy aignet2)
                (reg-copy-values 0 invals regvals aignet copy aignet2)
                aignet)))))

    Theorem: w-state-of-observability-fix-hyps/concls

    (defthm w-state-of-observability-fix-hyps/concls
      (b* (((mv ?hyp-copy
                ?new-hyps ?new-concls ?new-copy
                ?new-strash ?new-aignet2 ?new-state)
            (observability-fix-hyps/concls
                 hyps concls aignet
                 copy gatesimp strash aignet2 state)))
        (equal (w new-state) (w state))))

    Theorem: observability-fix-hyps/concls-of-lit-list-fix-hyps

    (defthm observability-fix-hyps/concls-of-lit-list-fix-hyps
     (equal
      (observability-fix-hyps/concls (lit-list-fix hyps)
                                     concls aignet
                                     copy gatesimp strash aignet2 state)
      (observability-fix-hyps/concls
           hyps concls aignet
           copy gatesimp strash aignet2 state)))

    Theorem: observability-fix-hyps/concls-lit-list-equiv-congruence-on-hyps

    (defthm
        observability-fix-hyps/concls-lit-list-equiv-congruence-on-hyps
      (implies (satlink::lit-list-equiv hyps hyps-equiv)
               (equal (observability-fix-hyps/concls
                           hyps concls aignet
                           copy gatesimp strash aignet2 state)
                      (observability-fix-hyps/concls
                           hyps-equiv concls aignet
                           copy gatesimp strash aignet2 state)))
      :rule-classes :congruence)

    Theorem: observability-fix-hyps/concls-of-lit-list-fix-concls

    (defthm observability-fix-hyps/concls-of-lit-list-fix-concls
     (equal
      (observability-fix-hyps/concls hyps (lit-list-fix concls)
                                     aignet
                                     copy gatesimp strash aignet2 state)
      (observability-fix-hyps/concls
           hyps concls aignet
           copy gatesimp strash aignet2 state)))

    Theorem: observability-fix-hyps/concls-lit-list-equiv-congruence-on-concls

    (defthm
      observability-fix-hyps/concls-lit-list-equiv-congruence-on-concls
      (implies (satlink::lit-list-equiv concls concls-equiv)
               (equal (observability-fix-hyps/concls
                           hyps concls aignet
                           copy gatesimp strash aignet2 state)
                      (observability-fix-hyps/concls
                           hyps concls-equiv aignet
                           copy gatesimp strash aignet2 state)))
      :rule-classes :congruence)

    Theorem: observability-fix-hyps/concls-of-node-list-fix-aignet

    (defthm observability-fix-hyps/concls-of-node-list-fix-aignet
     (equal
      (observability-fix-hyps/concls hyps concls (node-list-fix aignet)
                                     copy gatesimp strash aignet2 state)
      (observability-fix-hyps/concls
           hyps concls aignet
           copy gatesimp strash aignet2 state)))

    Theorem: observability-fix-hyps/concls-node-list-equiv-congruence-on-aignet

    (defthm
     observability-fix-hyps/concls-node-list-equiv-congruence-on-aignet
     (implies (node-list-equiv aignet aignet-equiv)
              (equal (observability-fix-hyps/concls
                          hyps concls aignet
                          copy gatesimp strash aignet2 state)
                     (observability-fix-hyps/concls
                          hyps concls aignet-equiv
                          copy gatesimp strash aignet2 state)))
     :rule-classes :congruence)

    Theorem: observability-fix-hyps/concls-of-gatesimp-fix-gatesimp

    (defthm observability-fix-hyps/concls-of-gatesimp-fix-gatesimp
     (equal
      (observability-fix-hyps/concls hyps concls
                                     aignet copy (gatesimp-fix gatesimp)
                                     strash aignet2 state)
      (observability-fix-hyps/concls
           hyps concls aignet
           copy gatesimp strash aignet2 state)))

    Theorem: observability-fix-hyps/concls-gatesimp-equiv-congruence-on-gatesimp

    (defthm
     observability-fix-hyps/concls-gatesimp-equiv-congruence-on-gatesimp
     (implies (gatesimp-equiv gatesimp gatesimp-equiv)
              (equal (observability-fix-hyps/concls
                          hyps concls aignet
                          copy gatesimp strash aignet2 state)
                     (observability-fix-hyps/concls
                          hyps concls aignet copy
                          gatesimp-equiv strash aignet2 state)))
     :rule-classes :congruence)

    Theorem: observability-fix-hyps/concls-of-node-list-fix-aignet2

    (defthm observability-fix-hyps/concls-of-node-list-fix-aignet2
      (equal (observability-fix-hyps/concls
                  hyps concls aignet copy
                  gatesimp strash (node-list-fix aignet2)
                  state)
             (observability-fix-hyps/concls
                  hyps concls aignet
                  copy gatesimp strash aignet2 state)))

    Theorem: observability-fix-hyps/concls-node-list-equiv-congruence-on-aignet2

    (defthm
     observability-fix-hyps/concls-node-list-equiv-congruence-on-aignet2
     (implies (node-list-equiv aignet2 aignet2-equiv)
              (equal (observability-fix-hyps/concls
                          hyps concls aignet
                          copy gatesimp strash aignet2 state)
                     (observability-fix-hyps/concls
                          hyps concls aignet copy
                          gatesimp strash aignet2-equiv state)))
     :rule-classes :congruence)