| Function Approximation |   |   | Partial Observability |   |   | Learning Methods |   |   | Ensembles |   |   | 
| Stochastic Optimisation |   |   | General RL |   |   | General ML |   |   | Multiagent Learning |   |   | 
| Comparison/Integration |   |   | Bandits |   |   | Applications |   |   | Robot Soccer |   |   | 
| Humanoids |   |   | Parameter |   |   | MDP |   |   | Empirical |   |   | 
| Failure Warning |   |   | Representation |   |   | General AI |   |   | Neural Networks |   |   | 
| All |   |   | 
 Stochastic search using the natural gradient
 Yi Sun,  Daan Wierstra,  Tom Schaul, and  Jürgen Schmidhuber, 2009
    Details   
 Pattern Recognition and Machine Learning
 Christopher M. Bishop, 2006
    Details   
 Data Mining: Practical machine learning tools and techniques
 Ian H. Witten and  Eibe Frank, 2005
    Details   
 Discriminative, Generative and Imitative learning
 Tony Jebara, 2002
    Details   
 On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes
 Andrew Y. Ng and  Michael I. Jordan, 2001
    Details   
 Neural Networks: A Comprehensive Foundation
 Simon Haykin, 1998
    Details   
 No free lunch theorems for optimization
 David H. Wolpert and  William G. Macready, 1997
    Details   
 Evaluation and Selection of Biases in Machine Learning
 Diana F. Gordon and  Marie desJardins, 1995
    Details   
 An Introduction to Computational Learning Theory
 Michael J. Kearns and  Umesh V. Vazirani, 1994
    Details   
 Shift of Bias for Inductive Concept Learning
 Paul E. Utgoff, 1986
    Details   
 The Need for Biases in Learning Generalizations
 Tom M. Mitchell, 1980
    Details