| Function Approximation |   |   | Partial Observability |   |   | Learning Methods |   |   | Ensembles |   |   | 
| Stochastic Optimisation |   |   | General RL |   |   | General ML |   |   | Multiagent Learning |   |   | 
| Comparison/Integration |   |   | Bandits |   |   | Applications |   |   | Robot Soccer |   |   | 
| Humanoids |   |   | Parameter |   |   | MDP |   |   | Empirical |   |   | 
| Failure Warning |   |   | Representation |   |   | General AI |   |   | Neural Networks |   |   | 
| All |   |   | 
 Characterizing reinforcement learning methods through parameterized learning problems
 Shivaram Kalyanakrishnan and  Peter Stone, 2011
    Details   
 On Learning with Imperfect Representations
 Shivaram Kalyanakrishnan and  Peter Stone, 2011
    Details   
 Protecting Against Evaluation Overfitting in Empirical Reinforcement Learning
 Shimon Whiteson,  Brian Tanner,  Matthew E. Taylor, and  Peter Stone, 2011
    Details   
 Temporal Difference Bayesian Model Averaging: A Bayesian Perspective on Adapting Lambda
 Carlton Downey and  Scott Sanner, 2010
    Details   
 Toward Off-Policy Learning Control with Function Approximation
 Hamid Reza Maei,  Csaba Szepesvári,  Shalabh Bhatnagar, and  Richard S. Sutton, 2010
    Details   
 Feature Selection Using Regularization in Approximate Linear Programs for Markov Decision Processes
 Marek Petrik,  Gavin Taylor,  Ron Parr, and  Shlomo Zilberstein, 2010
    Details   
 The adaptive $k$-meteorologists problem and its application to structure learning and feature selection in reinforcement learning
 Carlos Diuk,  Lihong Li, and  Bethany R. Leffler, 2009
    Details   
 Improving Optimistic Exploration in Model-Free Reinforcement Learning
 Marek Grze\'s and  Daniel Kudenko, 2009
    Details   
 A Method for Handling Uncertainty in Evolutionary Optimization With an Application to Feedback Control of Combustion
 Nikolaus Hansen,  André S.P. Niederberger,  Lino Guzzella, and  Petros Koumoutsakos, 2009
    Details   
 Regularization and feature selection in least-squares temporal difference learning
 J. Zico Kolter and  Andrew Y. Ng, 2009
    Details   
 Learning Representation and Control in Markov Decision Processes: New Frontiers
 Sridhar Mahadevan, 2009
    Details   
 Ontogenetic and Phylogenetic Reinforcement Learning
 Julian Togelius,  Tom Schaul,  Daan Wierstra,  Christian Igel,  Faustino Gomez, and  Jürgen Schmidhuber, 2009
    Details   
 Generalized Domains for Empirical Evaluations in Reinforcement Learning
 Shimon Whiteson,  Brian Tanner,  Matthew E. Taylor, and  Peter Stone, 2009
    Details   
 A Theoretical and Empirical Analysis of Expected Sarsa
 Harm van Seijen,  Hado van Hasselt,  Shimon Whiteson, and  Marco Wiering, 2009
    Details   
 An empirical evaluation of supervised learning in high dimensions
 Rich Caruana,  Nikolaos Karampatziakis, and  Ainur Yessenalina, 2008
    Details   
 Temporal Difference Updating without a Learning Rate
 Marcus Hutter and  Shane Legg, 2008
    Details   
 The many faces of optimism: a unifying approach
 Istvan Szita and  András Lörincz, 2008
    Details   
 SATzilla: Portfolio-based Algorithm Selection for SAT
 Lin Xu,  Frank Hutter,  Holger H. Hoos, and  Kevin Leyton-Brown, 2008
    Details   
 Evaluation of Policy Gradient Methods and Variants on the Cart-Pole Benchmark
 Martin Riedmiller,  Jan Peters, and  Stefan Schaal, 2007
    Details   
 An empirical comparison of supervised learning algorithms
 Rich Caruana and  Alexandru Niculescu-Mizil, 2006
    Details   
 Learning the structure of Factored Markov Decision Processes in reinforcement learning problems
 Thomas Degris,  Olivier Sigaud, and  Pierre-Henri Wuillemin, 2006
    Details   
 Adaptive stepsizes for recursive estimation with applications in approximate dynamic programming
 Abraham P. George and  Warren B. Powell, 2006
    Details   
 Function Approximation via Tile Coding: Automating Parameter Choice
 Alexander A. Sherstov and  Peter Stone, 2005
    Details   
 A Robot that Reinforcement-Learns to Identify and Memorize Important Previous Observations
 Bram Bakker,  Viktor Zhumatiy,  Gabriel Gruener, and  Jürgen Schmidhuber, 2003
    Details   
 Boosting as a Metaphor for Algorithm Design
 Kevin Leyton-Brown,  Eugene Nudelman,  Galen Andrew,  Jim McFadden, and  Yoav Shoham, 2003
    Details   
 Using MDP Characteristics to Guide Exploration in Reinforcement Learning
 Bohdana Ratitch and  Doina Precup, 2003
    Details   
 Characterizing Markov Decision Processes
 Bohdana Ratitch and  Doina Precup, 2002
    Details   
 A Perspective View and Survey of Meta-Learning
 Ricardo Vilalta and  Youssef Drissi, 2002
    Details   
 Scaling to Very Very Large Corpora for Natural Language Disambiguation
 Michele Banko and  Eric Brill, 2001
    Details   
 Random Forests
 Leo Breiman, 2001
    Details   
 Convergence of Optimistic and Incremental Q-Learning
 Eyal Even-Dar and  Yishay Mansour, 2001
    Details   
 Algorithm portfolios
 Carla P. Gomes and  Bart Selman, 2001
    Details   
 Local Search Algorithms for SAT: An Empirical Evaluation
 Holger H. Hoos and  Thomas Stützle, 2000
    Details   
 Meta-Learning by Landmarking Various Learning Algorithms
 Bernhard Pfahringer,  Hilan Bensusan, and  Christophe Giraud-Carrier, 2000
    Details   
 An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants
 Eric Bauer and  Ron Kohavi, 1999
    Details   
 Symposium on Applications of Reinforcement Learning: Final Report for NSF Grant IIS-9810208
 Pat Langley and  Mark Pendrith, 1998
    Details   
 Experiments with a New Boosting Algorithm
 Yoav Freund and  Robert E. Schapire, 1996
    Details   
 Incremental Multi-Step Q-Learning
 Jing Peng and  Ronald J. Williams, 1996
    Details   
 Bagging, Boosting, and C4.5
 J. Ross Quinlan, 1996
    Details   
 Recursive Automatic Bias Selection for Classifier Construction
 Carla E. Brodley, 1995
    Details   
 Problem Solving with Reinforcement Learning
 Gavin Adrian Rummery, 1995
    Details   
 Using a Genetic Algorithm to Search for the Representational Bias of a Collective Reinforcement Learner
 Helen G. Cobb and  Peter Bock, 1994
    Details   
 An Optimization-based Categorization of Reinforcement Learning Environments
 Michael L. Littman, 1993
    Details   
 Interactions between Learning and Evolution
 David Ackley and  Michael Littman, 1992
    Details   
 Inductive Biases in a Reinforcement Learner
 Helen G. Cobb, 1992
    Details   
 Learning from Delayed Rewards
 Christopher John Cornish Hellaby Watkins, 1989
    Details   
 How Evaluation Guides AI Research: The Message Still Counts More than the Medium
 Paul R. Cohen and  Adele E. Howe, 1988
    Details   
 Machine Learning as an Experimental Science
 Pat Langley, 1988
    Details   
 Learning Quickly When Irrelevant Attributes Abound: A New Linear-threshold Algorithm
 Nick Littlestone, 1987
    Details   
 Brains, Behavior and Robotics
 James Sacra Albus, 1981
    Details