| Function Approximation |   |   | Partial Observability |   |   | Learning Methods |   |   | Ensembles |   |   | 
| Stochastic Optimisation |   |   | General RL |   |   | General ML |   |   | Multiagent Learning |   |   | 
| Comparison/Integration |   |   | Bandits |   |   | Applications |   |   | Robot Soccer |   |   | 
| Humanoids |   |   | Parameter |   |   | MDP |   |   | Empirical |   |   | 
| Failure Warning |   |   | Representation |   |   | General AI |   |   | Neural Networks |   |   | 
| All |   |   | 
 Learning Representation and Control in Markov Decision Processes: New Frontiers
 Sridhar Mahadevan, 2009
    Details   
 Large Scale Reinforcement Learning using Q-Sarsa($łambda$) and Cascading Neural Networks
 Steffen Nissen, 2007
    Details   
 Distinctive Image Features from Scale-Invariant Keypoints
 David G. Lowe, 2004
    Details   
 Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition
 Thomas G. Dietterich, 2000
    Details   
 Between MDPs and Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning
 Richard S. Sutton,  Doina Precup, and  Satinder P. Singh, 1999
    Details   
 Learning hierarchical control structures for multiple tasks and changing environments
 Bruce L. Digney, 1998
    Details   
 Hierarchical Control and Learning for Markov Decision Processes
 Ronald Edward Parr, 1998
    Details   
 Inductive Biases in a Reinforcement Learner
 Helen G. Cobb, 1992
    Details   
 Intelligence without Representation
 Rodney A. Brooks, 1991
    Details