| Function Approximation |   |   | Partial Observability |   |   | Learning Methods |   |   | Ensembles |   |   | 
| Stochastic Optimisation |   |   | General RL |   |   | General ML |   |   | Multiagent Learning |   |   | 
| Comparison/Integration |   |   | Bandits |   |   | Applications |   |   | Robot Soccer |   |   | 
| Humanoids |   |   | Parameter |   |   | MDP |   |   | Empirical |   |   | 
| Failure Warning |   |   | Representation |   |   | General AI |   |   | Neural Networks |   |   | 
| All |   |   | 
 Learning Complementary Multiagent Behaviors: A Case Study
 Shivaram Kalyanakrishnan and  Peter Stone, 2010
    Details   
 Estimating Learning Rates in Evolution and TDL: Results on a Simple Grid-World Problem
 Simon M. Lucas, 2010
    Details   
 Critical Factors in the Empirical Performance of Temporal Difference and Evolutionary Methods for Reinforcement Learning
 Shimon Whiteson,  Matthew E. Taylor, and  Peter Stone, 2010
    Details   
 Reinforcement Learning Versus Model Predictive Control: A Comparison on a Power System Problem
 Damien Ernst,  Mevludin Glavic,  Florin Capitanescu, and  Louis Wehenkel, 2009
    Details   
 Neuroevolution strategies for episodic reinforcement learning
 Verena Heidrich-Meisner and  Christian Igel, 2009
    Details   
 An empirical analysis of value function-based and policy search reinforcement learning
 Shivaram Kalyanakrishnan and  Peter Stone, 2009
    Details   
 The Role of Value Systems in Decision Making
 Peter Dayan, 2008
    Details   
 Decision Theory, Reinforcement Learning, and the Brain
 Peter Dayan and  Nathaniel D. Daw, 2008
    Details   
 Accelerated Neural Evolution through Cooperatively Coevolved Synapses
 Faustino Gomez,  Jürgen Schmidhuber, and  Risto Miikkulainen, 2008
    Details   
 Similarities and differences between policy gradient methods and evolution strategies
 Verena Heidrich-Meisner and  Christian Igel, 2008
    Details   
 Variable Metric Reinforcement Learning Methods Applied to the Noisy Mountain Car Problem
 Verena Heidrich-Meisner and  Christian Igel, 2008
    Details   
 Evolving Soccer Keepaway Players Through Task Decomposition
 Shimon Whiteson,  Nate Kohl,  Risto Miikkulainen, and  Peter Stone, 2005
    Details   
 On Actor-Critic Algorithms
 Vijay R. Konda and  John N. Tsitsiklis, 2003
    Details   
 Coordinated Reinforcement Learning
 Carlos Guestrin,  Michail G. Lagoudakis, and  Ronald Parr, 2002
    Details   
 Gradient Descent for General Reinforcement Learning
 Leemon Baird and  Andrew Moore, 1999
    Details   
 Evolutionary Algorithms for Reinforcement Learning
 David E. Moriarty,  Alan C. Schultz, and  John J. Grefenstette, 1999
    Details   
 A Comparison of Direct and Model-Based Reinforcement Learning
 Christopher G. Atkeson and  Juan Carlos Santamar\'ia, 1997
    Details   
 Self-Improving Reactive Agents Based on Reinforcement Learning, Planning and Teaching
 Long-Ji Lin, 1992
    Details