Department of Computer Science

Machine Learning Research Group

University of Texas at Austin Artificial Intelligence Lab

Publications: 2012

  1. Review Quality Aware Collaborative Filtering
    [Details] [PDF]
    Sindhu Raghavan and Suriya Ganasekar and Joydeep Ghosh
    In Sixth ACM Conference on Recommender Systems (RecSys 2012), 123--130, September 2012.
  2. Bayesian Logic Programs for Plan Recognition and Machine Reading
    [Details] [PDF] [Slides]
    Sindhu Raghavan
    PhD Thesis, Department of Computer Science, University of Texas at Austin, December 2012. 170.
  3. Type-Supervised Hidden Markov Models for Part-of-Speech Tagging with Incomplete Tag Dictionaries
    [Details] [PDF]
    Dan Garrette and Jason Baldridge
    In Proceedings of the Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL 2012), 821--831, Jeju, Korea, July 2012.
  4. Improving Video Activity Recognition using Object Recognition and Text Mining
    [Details] [PDF] [Slides]
    Tanvi S. Motwani and Raymond J. Mooney
    In Proceedings of the 20th European Conference on Artificial Intelligence (ECAI-2012), 600--605, August 2012.
  5. Generative Models of Grounded Language Learning with Ambiguous Supervision
    [Details] [PDF] [Slides]
    Joohyun Kim
    Technical Report, PhD proposal, Department of Computer Science, The University of Texas at Austin, June 2012.
  6. Unsupervised PCFG Induction for Grounded Language Learning with Highly Ambiguous Supervision
    [Details] [PDF]
    Joohyun Kim and Raymond J. Mooney
    In Proceedings of the Conference on Empirical Methods in Natural Language Processing and Natural Language Learning (EMNLP-CoNLL '12), 433--444, Jeju Island, Korea, July 2012.
  7. Fast Online Lexicon Learning for Grounded Language Acquisition
    [Details] [PDF] [Slides]
    David L. Chen
    In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (ACL-2012), 430--439, July 2012.
  8. Learning to "Read Between the Lines" using Bayesian Logic Programs
    [Details] [PDF] [Slides]
    Sindhu Raghavan and Raymond J. Mooney and Hyeonseo Ku
    In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (ACL-2012), 349--358, July 2012.
  9. Learning Language from Ambiguous Perceptual Context
    [Details] [PDF] [Slides]
    David L. Chen
    PhD Thesis, Department of Computer Science, University of Texas at Austin, May 2012. 196.