Department of Computer Science

Machine Learning Research Group

University of Texas at Austin Artificial Intelligence Lab

Publications: Reinforcement Learning

Reinforcement Learning tasks are learning problems where the desired behavior is not known; only sparse feedback on how well the agent is doing is provided. Reinforcement Learning techniques include value-function and policy iteration methods (note that although evolutionary computation and neuroevolution can also be seen as reinforcement learning methods, they are presented separately in this area hierarchy.)
  1. Integrated Learning of Dialog Strategies and Semantic Parsing
    [Details] [PDF]
    Aishwarya Padmakumar and Jesse Thomason and Raymond J. Mooney
    To Appear In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2017), Valencia, Spain, April 2017.
    Natural language understanding and dialog management are two integral components of interactive dialog systems. Previous research has used machine learning techniques to individually optimize these components, with different forms of direct and indirect supervision. We present an approach to integrate the learning of both a dialog strategy using reinforcement learning, and a semantic parser for robust natural language understanding, using only natural dialog interaction for supervision. Experimental results on a simulated task of robot instruction demonstrate that joint learning of both components improves dialog performance over learning either of these components alone.
    ML ID: 342
  2. Using Active Relocation to Aid Reinforcement Learning
    [Details] [PDF]
    Lilyana Mihalkova and Raymond Mooney
    In Prodeedings of the 19th International FLAIRS Conference (FLAIRS-2006), 580-585, Melbourne Beach, FL, May 2006.
    We propose a new framework for aiding a reinforcement learner by allowing it to relocate, or move, to a state it selects so as to decrease the number of steps it needs to take in order to develop an effective policy. The framework requires a minimal amount of human involvement or expertise and assumes a cost for each relocation. Several methods for taking advantage of the ability to relocate are proposed, and their effectiveness is tested in two commonly-used domains.
    ML ID: 166
  3. Guiding a Reinforcement Learner with Natural Language Advice: Initial Results in RoboCup Soccer
    [Details] [PDF]
    Gregory Kuhlmann, Peter Stone, Raymond J. Mooney, and Jude W. Shavlik
    In The AAAI-2004 Workshop on Supervisory Control of Learning and Adaptive Systems, July 2004.
    We describe our current efforts towards creating a reinforcement learner that learns both from reinforcements provided by its environment and from human-generated advice. Our research involves two complementary components: (a) mapping advice expressed in English to a formal advice language and (b) using advice expressed in a formal notation in a reinforcement learner. We use a subtask of the challenging RoboCup simulated soccer task as our testbed.
    ML ID: 151